
Simulink® Requirements™
User's Guide

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Requirements™ User's Guide
© COPYRIGHT 2017–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2017 Online only New for Version 1.0 (Release 2017b)
March 2018 Online only Revised for Version 1.1 (Release 2018a)
September 2018 Online only Revised for Version 1.2 (Release R2018b)
March 2019 Online only Revised for Version 1.3 (Release R2019a)
September 2019 Online Only Revised for Version 1.4 (Release 2019b)
March 2020 Online only Revised for Version 1.5 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Requirements Definition
1

Author Requirements in Simulink . 1-2
Author and Edit Requirements Content by Using Microsoft Word 1-4
Customize Requirements Browser View . 1-4

Requirement Types . 1-6

Import Requirements from Third-Party Applications 1-7
Path Settings . 1-7
Import Requirements from Microsoft Office Documents 1-7
Import Requirements from ReqIF Files . 1-8
Import Modes . 1-10

Define Requirements Hierarchy . 1-12
Requirement Sets . 1-12
Custom Attributes of Requirement Sets . 1-12

Create Requirement Set File by Using the Simulink® Requirements™ API
. 1-14

Update Imported Requirements . 1-17
Considerations for Microsoft Word Documents . 1-18

Import and Update Requirements from a Microsoft Word Document . . 1-19
Import Requirements . 1-19
Update Requirements . 1-20

Export Requirement Sets and Link Sets to Previous Versions of Simulink
Requirements . 1-21

Export Link Sets . 1-21
Export Requirement Sets . 1-21

Use Command-line API to Document Simulink Model in Requirements
Editor . 1-22

Round Trip Workflows with ReqIF Files . 1-40
Import Requirements from ReqIF Files . 1-40
Edit Imported Content . 1-41
Export Requirements Content . 1-42

Best Practices and Guidelines for ReqIF Round Trip Workflows 1-43
Managing Requirement Custom IDs . 1-43
Guidelines for Updating Referenced Requirements Content 1-43
Guidelines for Editing Referenced Requirements Content 1-43
Guidelines for Adding Details to Imported Requirements 1-43

iii

Contents

Guidelines for Exporting Requirements to ReqIF Files 1-43

Create and Edit Attribute Mappings . 1-45
Specify Default ReqIF Requirement Type . 1-45
Specify ReqIF Template . 1-46

Requirements Traceability and Consistency
2

Link Blocks and Requirements . 2-2
Work with Simulink Annotations . 2-4

Track Requirement Links with a Traceability Matrix 2-5
Generate a Traceability Matrix . 2-5
Using the Traceability Matrix . 2-7
Limitations . 2-10

Requirement Links . 2-11
Linkable Items . 2-11
Link Types . 2-12
Review Requirement Links . 2-13
Resolve Links . 2-13
Load and Unload Link Information . 2-13

Define Custom Requirement and Link Types . 2-14

Requirements Consistency Checks . 2-16
Check Requirements Consistency in Model Advisor 2-16

Manage Navigation Backlinks in External Requirements Documents . . 2-20

Use Command-line API to Update or Repair Requirements Links 2-21

Requirements-Based Verification
3

Review Requirement Implementation Status Metrics Data 3-2

Summarize Requirements Verification Status . 3-3
Display Verification Status . 3-3
Update Verification Status by Running Tests or Analyses 3-4
Include Verification Status in Report . 3-5

Justify Requirements . 3-6

Linking to a Test Script . 3-8
Linking to a Test Script Using the Outgoing Links Editor 3-8
Linking to a Test Script Using the API . 3-11
Integrating Results from a MATLAB Unit Test Case 3-14

iv Contents

Include Results from External Sources in Verification Status 3-16
How to Populate Verification Results from External Sources 3-16

Linking to a Result File . 3-19
Linking to a Result File Using the Outgoing Links Editor 3-19
Linking to a Result File Using the API . 3-22

Validate Requirements by Analyzing Model Properties 3-26

Integrating results from a custom authored MATLAB script as a test . . 3-33

Integrating Results from an External Result file 3-37

Integrating results from a custom authored MUnit script as a test 3-41

Change Tracking and Team-Based Workflows
4

Requirements-Based Development in Projects . 4-2
Organizing Requirements, Models, and Tests . 4-2

Track Changes to Requirements Links . 4-3
Enable Change Tracking for Requirements Links 4-3
Resolve Change Issues for Requirement Links . 4-4
Add Comments to Links . 4-4
Considerations for Using Links Change Tracking 4-5

Compare Requirements Sets . 4-6
Compare Two .slreqx Simulink Requirements Sets 4-6
Review Changes in Source-Controlled Files . 4-6

Compare Link Sets . 4-7

Report Requirements Information . 4-8
Report Navigation Links . 4-10

Requirements Management Interface Setup
5

Configure RMI for Interaction with Microsoft Office and IBMRational
DOORS . 5-2
Configure RMI for Microsoft Office . 5-2
Configure RMI for IBMRational DOORS . 5-2
Configure RMI for IBM Rational DOORS Next Generation 5-3

Requirements Link Storage . 5-4
Save Requirements Links in External Storage . 5-4
Load Requirements Links from External Storage 5-5
Move Internally Stored Requirements Links to External Storage 5-5

v

Move Externally Stored Requirements Links to the Model File 5-5
External Storage . 5-6
Guidelines for External Storage of Requirements Links 5-6

Supported Requirements Document Types . 5-8

Requirements Settings . 5-10
Selection Linking Tab . 5-10
Filter Requirements with User Tags . 5-11

Microsoft Office Traceability
6

Link to Requirements in Microsoft Word Documents 6-2
Create Bookmarks in a Microsoft Word Requirements Document 6-2
Open the Example Model and Associated Requirements Document 6-3
Create a Link from a Model Object to a Microsoft Word Requirements

Document . 6-4

Link to Requirements in Excel Workbooks . 6-6
Navigate from a Model Object to Requirements in an Excel Workbook . . . 6-6
Create Requirements Links to the Workbook . 6-6
Link Multiple Model Objects to a Microsoft Excel Workbook 6-7
Change Requirements Links . 6-7

Navigate to Requirements in Microsoft Office Documents from Simulink
. 6-9

Enable Linking from Microsoft Office Documents to Simulink Objects 6-9
Insert Navigation Objects in Microsoft Office Documents 6-9
Customize Microsoft Office Navigation Objects . 6-10
Navigate Between Microsoft Word Requirement and Model 6-11

Requirements Traceability with IBM Rational DOORS
7

Configure Requirements Management Interface for IBM Rational DOORS
Software . 7-2

Before You Begin . 7-2
Manually Install Additional Files for DOORS Software 7-2
Diagnose and Fix DXL Errors . 7-3

Link with Requirements in DOORS Next Generation Project 7-4

Requirements Traceability with IBM Rational DOORS Next Generation
. 7-25

Link to Requirements in IBM Rational DOORS Next Generation 7-25
Navigate to Requirements from Simulink . 7-26
Work with IBM Rational DOORS Next Generation Projects with
Configuration Management Enabled . 7-26

vi Contents

Navigate to Requirements in IBM Rational DOORS Databases from
Simulink . 7-28

Enable Linking from IBM Rational DOORS Databases to Simulink Objects
. 7-28

Insert Navigation Objects into IBM Rational DOORS Requirements 7-28
Navigate Between IBM Rational DOORS Requirement and Model Object

. 7-30
Why Add Navigation Objects to IBM Rational DOORS Requirements? . . . 7-30
Customize IBM Rational DOORS Navigation Objects 7-31

Synchronize Simulink Models with IBM Rational DOORS Databases by
using Surrogate Modules . 7-32

Synchronize a Simulink Model to Create a Surrogate Module 7-32
Create Links Between Surrogate Module and Formal Module in an IBM

Rational DOORS Database . 7-33
Resynchronize IBM Rational DOORS Surrogate Module to Reflect Model

Changes . 7-34
Navigate with the Surrogate Module . 7-35
Customize IBM Rational DOORS Synchronization 7-36
Synchronization with IBM Rational DOORS Surrogate Modules 7-41
Advantages of Synchronizing Your Model with a Surrogate Module 7-42

Working with IBM Rational DOORS 9 Requirements 7-43

Simulink Traceability Between Model Objects
8

Link Model Objects . 8-2
Link Objects in the Same Model . 8-2
Link Objects in Different Models . 8-2

Link Test Cases to Requirements Documents . 8-3
Establish Requirements Traceability for Testing . 8-3

Link Simulink Data Dictionary Entries to Requirements 8-7

Link Signal Builder Blocks to Requirements and Simulink Model Objects
. 8-8

Link Signal Builder Blocks to Requirements Documents 8-8
Link Signal Builder Blocks to Model Objects . 8-9

Requirements Links for Library Blocks and Reference Blocks 8-11
Introduction to Library Blocks and Reference Blocks 8-11
Library Blocks and Requirements . 8-11
Copy Library Blocks with Requirements . 8-11
Manage Requirements on Reference Blocks . 8-11
Manage Requirements Inside Reference Blocks 8-12
Links from Requirements to Library Blocks . 8-14

Navigate to Requirements from Model . 8-15
Navigate from Model Object . 8-15
Navigate from System Requirements Block . 8-15

vii

MATLAB Code Traceability
9

Requirements Traceability for MATLAB Code Lines 9-2
Link MATLAB Code Lines to Requirements in a Requirement Set 9-2
Link MATLAB Code Lines to Requirements Information in External

Documents . 9-2
Enable or Disable Traceability Links Highlighting for MATLAB Code 9-3
Remove Traceability Links from MATLAB Code Lines 9-3
Traceability for MATLAB Code Lines . 9-4

URL and Custom Traceability
10

Requirement Links and Link Types . 10-2
Requirements Traceability Links . 10-2
Supported Model Objects for Requirements Linking 10-2
Links and Link Types . 10-2
Link Type Properties . 10-3
Outgoing Links Editor . 10-6

Custom Link Types . 10-8
Create a Custom Requirements Link Type . 10-8
Implement Custom Link Types . 10-13
Why Create a Custom Link Type? . 10-14
Custom Link Type Functions . 10-14
Custom Link Type Registration . 10-14
Custom Link Type Synchronization . 10-15

Review and Maintain Requirements Links
11

Highlight Model Objects with Requirements . 11-2
Highlight Model Objects with Requirements Using Model Editor 11-2
Highlight Model Objects with Requirements Using Model Explorer 11-3

Navigate to Simulink Objects from External Documents 11-4
Provide Unique Object Identifiers . 11-4
Use the rmiobjnavigate Function . 11-4
Determine the Navigation Command . 11-4
Use the ActiveX Navigation Control . 11-4
Typical Code Sequence for Establishing Navigation Controls 11-5

View Requirements Details for a Selected Block 11-6
Requirements Details Workflow . 11-6
Requirements Details Limitations . 11-6

viii Contents

Generate Code for Models with Requirements Links 11-7
How Requirements Information Is Included in Generated Code 11-8

Create and Customize Requirements Traceability Reports 11-9
Create Requirements Traceability Report for Model 11-9
Customize Requirements Traceability Report for Model 11-10

Create Requirements Traceability Report for A Project 11-24

Validate Requirements Links . 11-25
Validate Requirements Links in a Model . 11-25
Validate Requirements Links in a Requirements Document 11-29
Validation of Requirements Links . 11-31

Delete Requirements Links from Simulink Objects 11-33
Delete a Single Link from a Simulink Object . 11-33
Delete All Links from a Simulink Object . 11-33
Delete All Links from Multiple Simulink Objects 11-33

Document Path Storage . 11-34
Relative (Partial) Path Example . 11-34
Relative (No) Path Example . 11-34
Absolute Path Example . 11-34

Requirements Management Interface
12

Verification and Validation
13

Test Model Against Requirements and Report Results 13-2
Requirements – Test Traceability Overview . 13-2
Display the Requirements . 13-2
Link Requirements to Tests . 13-3
Run the Test . 13-4
Report the Results . 13-5

Analyze a Model for Standards Compliance and Design Errors 13-7
Standards and Analysis Overview . 13-7
Check Model for Style Guideline Violations and Design Errors 13-7

Perform Functional Testing and Analyze Test Coverage 13-9
Incrementally Increase Test Coverage Using Test Case Generation 13-9

Analyze Code and Test Software-in-the-Loop . 13-12
Code Analysis and Testing Software-in-the-Loop Overview 13-12
Analyze Code for Defects, Metrics, and MISRA C:2012 13-12

ix

Requirements Definition

• “Author Requirements in Simulink” on page 1-2
• “Requirement Types” on page 1-6
• “Import Requirements from Third-Party Applications” on page 1-7
• “Define Requirements Hierarchy” on page 1-12
• “Create Requirement Set File by Using the Simulink® Requirements™ API” on page 1-14
• “Update Imported Requirements” on page 1-17
• “Import and Update Requirements from a Microsoft Word Document” on page 1-19
• “Export Requirement Sets and Link Sets to Previous Versions of Simulink Requirements”

on page 1-21
• “Use Command-line API to Document Simulink Model in Requirements Editor” on page 1-22
• “Round Trip Workflows with ReqIF Files” on page 1-40
• “Best Practices and Guidelines for ReqIF Round Trip Workflows” on page 1-43
• “Create and Edit Attribute Mappings” on page 1-45

1

Author Requirements in Simulink
In this section...
“Author and Edit Requirements Content by Using Microsoft Word” on page 1-4
“Customize Requirements Browser View” on page 1-4

In Simulink® Requirements™, you organize your requirements in groups called requirement sets. In
each requirement set, you can create additional levels of hierarchy if you need to further describe a
requirement's details.

In this tutorial, you use the Requirements Editor to create a requirement set, organize related
requirements, and add requirements to the set.

Suppose that you are writing requirements for a controller model of an automobile cruise control
system. You develop these requirements using your company’s numbering standard (R1, R2, and so
on).

ID and Description Rationale
R1: The maximum input throttle is 100% The maximum value of the throttle from the

acceleration pedal can be no greater than 100%.
R2: Cruise control has a speed operation range Cruise control has a minimum and maximum

operating speed.
R2.1: The vehicle speed must be at least 40 km/h The speed of the vehicle must be at least 40 km/h

for the cruise control system to engage.
R2.2: The vehicle speed cannot be greater than
100 km/h

The maximum operational speed of the cruise
control system for the vehicle is 100 km/h.

Add these requirements to a model called crs_controller.

1 Open the project that includes the model and supporting files. At the MATLAB® command
prompt, enter:

slreqCCProjectStart
2 Open the model. At the command prompt, enter:

open_system('models/crs_controller')
3 Open the Requirements Editor. In the Apps tab, click Requirements Manager. In the

Requirements tab, click Requirements Editor.

The Requirements Editor displays the requirements in the Requirements Browser arranged by
requirement set. The crs_controller model has two requirement sets: crs_req_func_spec
and crs_req.

1 Requirements Definition

1-2

4 Add a requirement set in the Requirements Browser. From the Requirements Editor toolbar, click

New Requirement Set .
5 Save the requirement sets to external files. Save your requirement set to a writable location and

name it cruise_control_reqset.slreqx. You can choose whether to share requirements
with other models.

6 Add a requirement to your requirement set by selecting the requirement set and clicking Add

Requirement .
7 In the Properties pane, enter the details for the requirement. You can copy and paste or drag

requirements from another source to the Properties pane. Enter the details for the requirement:

• Custom ID: R1
• Summary: Max input throttle %
• Description: The maximum input throttle is 100%.

If you do not specify a custom ID, the Requirements Editor numbers requirements in order.
Custom IDs enable you to use your company standards for labeling requirements and to set the
numeric order. (Custom IDs cannot contain a # character.) You can also use an ID to help locate a
requirement when searching. Keywords aid in searching for a requirement.

8 Create the requirement R2. Right-click R1 and select Add Requirement After. Enter the details
for the requirement:

• Custom ID: R2
• Summary: Cruise control speed operation range
• Description: Cruise control has a minimum and maximum operating speed.

9 Create child requirements for R2 by right-clicking R2 and selecting Add Child Requirement.
Enter the details for the requirement:

• Custom ID: R2.1
• Summary: Minimum vehicle speed
• Description: The speed of the vehicle must be at least 40 km/h for the cruise control system

to engage.

Repeat this step to add other child requirements to R2.

You can rearrange the hierarchy by using the or by dragging requirements.

 Author Requirements in Simulink

1-3

Author and Edit Requirements Content by Using Microsoft Word
To author and edit the Description and Rationale fields of your requirements, open Microsoft®

Word from within the Requirements Editor or the Requirements Perspective View.

Note This functionality is available only on Microsoft Windows® platforms.

Using Microsoft Word to edit rich text requirements enables you to:

• Spell-check requirements content.
• Resize images.
• Insert and edit equations.
• Insert and edit tables.

On the Edit field toolbar, in either the Description or Rationale fields, click the icon. Save the
changes to your requirements content within Microsoft Word to see them reflected in Simulink
Requirements.

When you use Microsoft Word to edit requirements content, you cannot edit requirements in the
built-in editor.

Customize Requirements Browser View
View or Hide Columns in the Requirements Editor

Right-click the header row and click Select Columns to change the view configuration of the
Requirements Editor. Add, remove, and reorder attribute columns through the Column Selector
dialog box. The view configuration is saved across sessions. You can export view settings to a MAT-file
by using the slreq.exportViewSettings function and import them by using the
slreq.importViewSettings function.

You can reset view configurations by using the slreq.resetViewSettings function.

Filter Requirements Content

You can search requirements contenting by using the Search field at the top of the Requirements
Browser. You can find specific requirements within loaded requirement sets based on requirement
attributes and descriptions.

Specify Filter Text Strings — As you enter text in the Search text box, the Requirements Browser
performs a dynamic search and displays the results. The search operation applies only to attributes
you choose to display in the Requirements Browser.

The text strings you enter must be consistent with the guidelines described in the following sections.

Case Sensitivity — By default, the Requirements Browser ignores case as it filters.

If you want the Requirements Browser to respect case sensitivity, put that text string in quotation
marks.

1 Requirements Definition

1-4

Specify Attributes and Attribute Values — To restrict the filtering to requirements with a specific
attribute, type the attribute name, followed by a colon. The Requirements Browser displays only the
requirements that have that attribute.

To filter for requirements for which a specific attribute has a specific value, type the attribute name,
followed by a colon (:), then the value. For example, to filter the contents to display only the
requirements where the Summary attribute has a value that includes Aircraft, enter Summary:
Aircraft (alternatively, you could put the whole string in quotation marks to enforce case
sensitivity).

Wildcards and MATLAB Expressions Are Not Supported — The Requirements Browser does not
recognize wildcard characters, such as *. For example, searching fuel* returns no results, even if
requirements contain the text string fuel.

Also, if you specify a MATLAB expression in the Search text box, the Requirements Browser
interprets that string as literal text, not as a MATLAB expression.

Tip Clear the filtered contents by clicking X in the Search text box.

 Author Requirements in Simulink

1-5

Requirement Types
When you create or import requirements in Simulink Requirements, you can specify the requirement
type by using the Type drop-down list in the Properties sidebar of the Requirements Editor or the
Requirements Perspective View.

Simulink Requirements provides these built-in requirement types:

• Functional: Classify requirements that are meant to be implemented or verified in your Model-
Based Design workflow. Functional requirements contribute to the Implementation and
Verification status metrics of the requirement set that they are in.

• Container: Group requirements. Container requirements do not contribute to the Implementation
and Verification status metrics of the requirement set that they are in. However, all the Functional
requirements under a Container requirement contribute to the status metrics.

• Informational: Provide supplemental information. Informational requirements and all
requirements under them do not contribute to the Implementation and Verification status metrics
of the requirement set that they are in.

You can also define custom requirement types. For more information, see “Define Custom
Requirement and Link Types” on page 2-14.

1 Requirements Definition

1-6

Import Requirements from Third-Party Applications
You can work with third-party requirements management applications by importing requirements.
You can import requirements as new requirement sets, or reference requirements in the third-party
application. Supported applications include:

• Microsoft Word
• Microsoft Excel®

• IBM® Rational® DOORS®

• Applications that use the Requirements Interchange Format (ReqIF). See “Import Requirements
from ReqIF Files” on page 1-8.

Path Settings
Add requirements documents to the MATLAB path. You can:

• Store the relative path for the currently running instance of MATLAB,
• Add the parent folder of the requirements document to the MATLAB path, or
• Update the Simulink Requirements path preference to always use the relative path. For more

information on requirements document path preference, see “Document Path Storage” on page
11-34.

Import Requirements from Microsoft Office Documents
Importing requirements from Microsoft Office documents is supported on Windows platforms.

In the Requirements Editor:

1 Select File > Import.
2 Select the Document type.
3 Import the most recently opened document, or browse for another document.

Import Options for Microsoft Word Documents

You can import requirements in plain and rich text formats from Microsoft Word documents. Use the
rich text format to import requirements content such as graphics and tables.

By default, imported requirements content matches the Microsoft Word document outline of section
headings. You can also import requirements selectively by using the following qualifiers from the
Requirement Identification menu:

• Predefined bookmarks in Microsoft Word to identify items and to serve as custom IDs. It is
recommended to use bookmarks as requirement Custom IDs as they are persistently stored in the
document and cannot be duplicated.

• Regular expression search patterns to identify items by occurrence. See “Regular Expressions”
(MATLAB).

• You can choose to ignore outline numbers in the section headers of your Microsoft Word
document. If you import requirements as references, it is recommended to ignore outline numbers
to prevent issues with the Update process.

 Import Requirements from Third-Party Applications

1-7

Note If you do not have images in your requirements document, consider importing your
requirements as plain text to prevent some issues related to font, style, or whitespace differences.

Import Options for Microsoft Excel Spreadsheets

You can import requirements in plain and rich text formats from Microsoft Excel spreadsheets. The
plain text format imports only text and associates each column of your spreadsheet to a requirement
property. The rich text format imports graphics, layouts, and captures multicell ranges.

Use the qualifiers from the Requirement Identification menu to select a subset of your spreadsheet
to import requirements from.

1 Choose individual rows and columns by mapping columns to requirement attributes. Select
Specify rows and columns and click Configure columns. If there are no predefined headers in
your spreadsheet, Simulink Requirements prompts you to specify the row that contains headers
for attribute names.

2 In the Configure columns dialog box, select the range of rows and columns to import. Select how
each column in your spreadsheet can be mapped to Properties and Custom Attributes by
choosing an option from that drop-down list. When you map columns to Properties and Custom
Attributes, consider:

• You can select only one column each for the Custom ID and Summary. If you cannot map
one of the columns in the spreadsheet to a column that holds unique requirement Custom IDs,
the Import operation automatically generates unique Custom IDs based on the rows in the
spreadsheet. These Custom IDs might not be persistent. If you explicitly select a column that
does not have unique Custom IDs, you cannot update the requirements document later.

• You can select one or more continuous columns for the Description and the Rationale. The
contents of these columns are concatenated into one field after the import is completed.

• You must select at least one column for the Summary or the Description.

To omit columns from the import, select the Ignore option.
3 You can use regular expression search patterns to selectively identify and import items by

occurrence. See “Regular Expressions” (MATLAB).

Import Requirements from ReqIF Files
Many third-party requirements management applications can export and import requirements using
the ReqIF™ format. You can import requirements from a ReqIF file as references to a third-party
source, or as new requirement sets.

Third-party applications that use ReqIF with particular attribute mapping include:

• Polarion™
• PREEvision
• IBM Rational DOORS
• IBM Rational DOORS Next Generation

Other third-party applications can use generic ReqIF mapping.

1 Requirements Definition

1-8

Third-party Specific Server Configuration

Polarion: When working with Polarion, modify the Polarion server configuration to use the actual
server name in repo and base.url property values. Do not use localhost.

1 Open the polarion.properties file found in the <polarion_installation>/polarion/
configuration/ folder.

2 Modify these lines:

• repo=http://localhost:80/repo/
• base.url=http://localhost:80/

by replacing localhost with the externally known name for your server.

ReqIF Import Workflow

To import requirements from a ReqIF file:

1 In the Requirements Editor, select File > Import.
2 For Document type, select ReqIF file (*.reqif or *.reqifz).
3 For Document location, select the ReqIF file location.
4 Simulink Requirements detects the source tool of the ReqIF file. You can also manually select a

Source tool, or select Generic if the source is unknown.
5 Select the location for the destination requirement set.
6 Select whether to allow updates to the imported requirements:

1 If your requirements are maintained in an external tool, and you want to be able to update
the imported requirement set with updated versions of the ReqIF file, select Allow updates
from external source.

2 To establish the Simulink Requirements set as the primary requirements artifact, do not
select Allow updates from external source.

7 Complete the import process by clicking Import.

Importing Multiple ReqIF Specifications

You can import multiple source specifications from ReqIF files. When you import ReqIF files that
contain multiple source specifications, you can choose to:

1 Select a single ReqIF source specification to import into a requirement set.
2 Combine ReqIF source specifications into one requirement set. Each specification is imported

into its own Import node. You can update each Import node independently.
3 Import each ReqIF source specification into a separate requirement set. Instead of selecting a

destination requirement set, you select a destination folder. The import operation creates
multiple requirement set files in the destination folder.

If a ReqIF file contains a single specification, options 2 and 3 above are not available.

For large ReqIF files, import each source specification into a separate requirement set. This can help
reduce file conflicts and simplify change tracking and differencing of individual requirement sets.

In ReqIF, a link is represented as a SpecRelation between two SpecObjects.. Select Import links to
preserve links in the ReqIF file. Import links is enabled if the ReqIF file has SpecRelations between
SpecObjects. After import, Simulink Requirements link set files contain links between requirements
or external URLs.

 Import Requirements from Third-Party Applications

1-9

If the ReqIF file does not define SpecRelations, the Import links option is disabled. Only valid links
are imported. The link import operation depends on how you import the source specifications:

1 Importing a single specification into a requirement set imports only the SpecRelations within the
specification's SpecObjects. As a result, some links can be omitted.

2 Combining ReqIF source specifications into one requirement set imports resolved links into one
link set.

3 Importing each ReqIF source specification into a separate requirement set imports resolved links
are into separate linksets.

Customize Attribute Display

ReqIF represents a requirement as a SpecObject with user-defined attributes. You can customize
how the Requirements Editor and Requirements Browser displays imported requirements data and
properties.

To customize the display of imported requirements data, map the attributes of the SpecObject to
either built-in or custom attributes of a requirement. You can save this mapping as an XML file for
future use.

To modify the attribute mapping after you import, select the top-level Import node of the requirement
set (denoted by) and expand the Attribute Mapping pane. You can also load a previously saved
attribute mapping by clicking Load mapping.

Import Modes
Simulink Requirements provides two import modes for importing requirements content. Before you
complete the Import process, you must specify if you want to allow updates to your imported
requirements from the external requirements document by selecting or clearing Allow updates from
external source.

Import Requirements

If you want to permanently migrate your requirements from the external requirements management
application, do not allow updates to imported requirements from the external source document.
Requirements are then imported as slreq.Requirement objects and are represented by in the
Requirements Spreadsheet. Importing requirements as slreq.Requirement objects allows you to
freely edit, delete, and rearrange requirements.

Import Referenced Requirements

If you choose to allow updates, requirements are imported as referenced requirements
(slreq.Reference objects) that you can unlock and edit within Simulink Requirements.

Referenced requirements retain some dependencies to the source document and are locked for

editing by default. Locked requirements are represented by in the Requirements Spreadsheet.
Edit an individual requirement by navigating to it and clicking Unlock in the Properties pane.
Unlocked requirements are represented by in the Requirements Spreadsheet. Unlock all
referenced requirements by navigating to the top import node (denoted by) and clicking Unlock
all in the Requirement Interchange pane. You cannot relock requirements after you unlock them,

1 Requirements Definition

1-10

except by updating them. You cannot delete or change the hierarchy of referenced requirements from
within Simulink Requirements.

If your requirements are imported from an external source, other users are likely to change them in
the external source document. To make your referenced requirements reflect the latest version of the
requirements as in the external source document, obtain an updated file from the external source.
Updating requirements from the external document overwrites all the local changes that you made to
imported requirements content.

The Update operation preserves local custom attributes you create within Simulink Requirements. If
you have attributes with the same name in the requirement set and in the external source document,
the Update operation overwrites the local values with the attribute values defined in the external
source document.

When working with referenced requirements, you can navigate to the requirement in the external
source document by clicking Show in document in the Properties pane. If there is a change in the
source document's file name or location, right-click the top node of the requirement set and select
Update source document name or location.

See Also
slreq.import

More About
• “Update Imported Requirements” on page 1-17
• “Round Trip Workflows with ReqIF Files” on page 1-40

 Import Requirements from Third-Party Applications

1-11

Define Requirements Hierarchy
Using Simulink Requirements, you can derive lower-level requirements from higher-level
requirements to establish and manage parent-child relationships.

The requirement set is the top level of hierarchy for all requirements. All requirements in Simulink
Requirements are contained in requirement sets. Every top-level parent requirement in a
requirement set is the first-level hierarchy for that set. Referenced requirements (slreq.Reference
objects) and requirements (slreq.Requirement objects) cannot share a parent requirement.

Within a requirement set, you can change the level of individual requirements by using the
icons in the Requirements Editor or on the Requirements Browser toolbar. When you promote or
demote a requirement with children, the parent-child hierarchical relationship is preserved. You can
also move requirements up and down the same level of hierarchy by right-clicking the requirement
and selecting Move up or Move down.

The Implementation and Verification Status metrics for a requirement set are cumulatively
aggregated over all the requirements in the set. Each parent requirement in a requirement set
derives its metrics from all its child requirements. For more information on the Implementation and
Verification Status metrics, see “Review Requirement Implementation Status Metrics Data” on page
3-2 and “Summarize Requirements Verification Status” on page 3-3.

Requirement Sets
You can create requirement sets from the Requirements Editor and from the Requirements
Browser. Requirement set files (.slreqx) are not inherently associated with your Simulink models.

Requirement sets have built-in properties such as the Filepath and the Revision number associated
with them as metadata. Except for the Description, properties of the requirement set are read-only
and are updated as you work with the requirement set.

Custom Attributes of Requirement Sets
Define custom attributes for your requirement sets that apply to the requirements they contain.
Custom attributes extend the set of properties associated with your requirements. Define custom
attributes for a requirement set from the Custom Attribute Registries pane of the Requirements
Editor.

To define custom attributes:

1 Open the Requirements Editor. In the Apps tab, click Requirements Manager. In the
Requirements tab, click Requirements Editor.

2 Select the requirement set and click Add in the Custom Attribute Registries pane.
3 The Custom Attribute Registration dialog box opens. Select the type of custom attribute you want

to set for your requirements by using the Type drop-down list. You can specify custom attributes
as text fields, check boxes, and combo boxes and date time entries.

To view the custom attributes for your requirements in the spreadsheet, right-click the requirement
set and click Select Columns.

When you define a custom attribute as a combobox, the first entry is preset to Unset and it cannot be
renamed or deleted. Custom attributes that are imported as referenced requirements from an

1 Requirements Definition

1-12

external document become read-only custom attributes after they are imported. The custom
attributes of a requirement set are associated with every individual requirement in the set and
removing the custom attributes for a requirement set removes it from all the requirements in the set.

 Define Requirements Hierarchy

1-13

Create Requirement Set File by Using the Simulink®
Requirements™ API

This example shows how to use the Simulink® Requirements™ API to create a requirement set with a
custom hierarchy and custom requirement types. You create a requirement set as an .slreqx file.
You can distribute the .slreqx file across your organization.

You can integrate the requirement set file into a change management system that users can use as a
parent document to create their own requirement sets.

Requirement Set Hierarchy

The requirement set that you create in this example contains two top-level parent requirements and
parent justifications for implementation and verification. The requirement set follows this hierarchical
structure.

Create Requirement Set

Navigate to the folder where you want to create the requirement set. Create a requirement set
my_New_Req_Set with handle myReqSet by using the slreq.new() function.

myReqSet = slreq.new('my_New_Req_Set');

Add System Requirements to the Requirement Set

Add a top-level Container requirement for System Requirements to the requirement set

1 Requirements Definition

1-14

myParentReq1 = add(myReqSet,'Id','R1', ...
 'Summary','System Requirements', ...
 'Type', 'Container');

Create child requirements for R1.

childReqR11 = add(myParentReq1,'Id','R1.1');
childReqR12 = add(myParentReq1,'Id','R1.2');

Create child requirements for R1.1.

childReqR111 = add(childReqR11,'Id','R1.1.1');
childReqR112 = add(childReqR11,'Id','R1.1.2');
childReqR113 = add(childReqR11,'Id','R1.1.3');

Create a child requirement for R1.1.3.

childReqR1131 = add(childReqR113,'Id','R1.1.3.1');

Add Safety Requirements to the Requirement Set

Add a top-level Safety requirement to the requirement set. Safety requirements are informational and
do not contribute to the Implementation and Verification status summaries. In this example, you
define a custom requirement type that extends the Informational requirement type by using the
sl_customization.m file.

Refresh customizations to add the Safety requirement type to the list of requirement types.

sl_refresh_customizations;

Create the parent safety requirement.

myParentReq2 = add(myReqSet,'Id','R2', ...
 'Summary','Safety Requirements', ...
 'Type','Safety');

Create child requirements for R2.

childReqR21 = add(myParentReq2,'Id','R2.1');
childReqR22 = add(myParentReq2,'Id','R2.2');

Create child requirements for R2.2.

childReqR221 = add(childReqR22,'Id','R2.2.1');
childReqR222 = add(childReqR22,'Id','R2.2.2');
childReqR223 = add(childReqR22,'Id','R2.2.3');

Add Justifications to the Requirement Set

Create the parent justification.

myParentJustification = addJustification(myReqSet,'Id','J', ...
 'Summary','Requirement Justifications');

Add child justifications to the parent justification J to justify requirements for Implementation

childJust1 = add(myParentJustification,'Id','J1', ...
 'Summary','Implementation Justifications');

 Create Requirement Set File by Using the Simulink® Requirements™ API

1-15

Add child justifications to the parent justification J to justify requirements for Verification

childJust2 = add(myParentJustification,'Id','J2', ...
 'Summary','Verification Justifications');

Save the Requirement Set

save(myReqSet);

1 Requirements Definition

1-16

Update Imported Requirements
You can import referenced requirements from external requirements source documents, then update
them when changes are made to the source document. To import referenced requirements, open the
Requirements Editor, select File > Import, choose the source document and check the option to
Allow updates from external source. When you import requirements as referenced requirements
from external requirement documents, they retain a reference to the source document. Check if you
have an updated version of the source document by refreshing an import node. The top import node
icon changes to when an updated source document is available, indicating that the timestamp of
the source document is more recent than the last imported or updated timestamp.

Select the updated version of the source document during the Update operation. Alternatively, you
can update the file name and location of the source requirements document by right-clicking the top
node of the requirement set and selecting Update source document name or location.

Update your requirements in the requirement set. Select the top node and click Update in the
Requirements Interchange pane. Updating requirements:

• Matches the previously imported requirements to the updated source requirements and updates
the requirements in the new version of the document. This includes overwriting any local changes
you made to unlocked requirements.

• Generates comments about the differences between the document versions in the Comments
pane of the top Import node in the requirement set.

• Updates the modifiedOn value for the updated requirements and the updatedOn value for the
top Import node of the requirement set.

• Marks the requirement set as dirty, even if the requirements data did not change because its
updatedOn value changed.

• Preserves links to updated requirements.
• Preserves requirement SIDs.
• Preserves comments on requirements.
• Preserves local custom attributes you create within Simulink Requirements.

Updating requirements does not change the links to updated requirements, the requirement SIDs,
the comments on requirements, or local custom attributes you create. If attributes in the requirement
set and the external source document use the same name, the updated requirements use the attribute
values defined in the external source document.

If you have change tracking enabled, and there are changes to a requirement with links, updating
requirements might trigger change issues that you might have to resolve:

• Match: No changes were detected between document versions. When you import different
versions of the same document, the Update operation might detect only whitespace differences,
such as carriage returns, linefeeds, and nonbreaking spaces. In this scenario, the Update
operation does not update the rich text fields such as the Description and the Rationale.

• Insertion: A new requirement was inserted in the requirement set.
• Deletion: A previously imported requirement was deleted from the requirement set.
• Update: The built-in or custom attribute values of a previously updated requirement were

changed.

 Update Imported Requirements

1-17

• Move: A requirement was moved in the requirement hierarchy.
• Reorder: A requirement was reordered with respect to its sibling requirements.

Before importing requirements into Simulink Requirements, ensure that your requirements in the
requirements document have persistent and unique custom IDs that do not change across document
versions. The Update operation otherwise matches unrelated requirements and displays more
differences between document versions than actually exist.

Considerations for Microsoft Word Documents
Follow these guidelines when importing requirements from Microsoft Word documents:

• Use bookmarks for requirement custom IDs. You can then add content to the document while
maintaining requirement references. If you use section headings as requirement custom IDs,
changing the document can result in unresolved links when updating requirements.

• If you import requirements into a requirement set on one computer and update your requirements
on a different computer with a different set of fonts or styles installed, additional changes to the
requirement descriptions may be tracked. These changes occur because the font or style is
embedded in the HTML descriptions of the requirements.

• Before you execute update requirements, convert documents that you created in an older version
of Microsoft Word to the current version. This conversion prevents Microsoft Word from inserting
spurious whitespaces in your requirements document.

• In Microsoft Word, resolve issues related to the Trust Center or pending updates if you encounter
any errors during the Import or Update operations. These issues might cause Microsoft Word to
block incoming connections from MATLAB .

See Also

More About
• “Import Requirements from Third-Party Applications” on page 1-7

1 Requirements Definition

1-18

Import and Update Requirements from a Microsoft Word
Document

This example shows how to import and update requirements from a Microsoft Word requirements
document. The model demonstrates a simple two-button switch that passes through outputs when
only one switch is pressed at a time.

Open the model. At the MATLAB command prompt, enter:

mdl = 'rejectDoublePress';
open_system(fullfile(matlabroot,'examples','slrequirements',mdl))

The supporting requirements document is located at matlab/examples/slrequirements.

This example uses a Microsoft Word document,
Reject_Double_Button_Press_Model_Requirements.docx. This document contains a set of
functional requirements for the Reject_Double_Button_Press model. Open the document from
matlab/examples/slrequirements. The requirements in the document appear in outline format
with custom bookmarks for navigation. To get the best results while importing and updating
requirements, set up your Microsoft Word documents with document outlines and custom bookmarks.

Save the requirements document to a local folder before importing requirements from it.

Import Requirements
1 Open the Requirements Editor. In the Apps tab, click Requirements Manager. In the

Requirements tab, click Requirements Editor.
2 In the Requirements Editor, select File > Import.
3 For Document type, select Microsoft Word document, and select

Reject_Double_Button_Press_Model_Requirements.docx as the Document location.
4 Import requirements as plain text, read-only references to a destination requirement set. In the

Requirement Identification option group, select the options to use bookmarks and to ignore
outline numbers. For more information on import options, see “Import Options for Microsoft
Word Documents” on page 1-7.

The requirements from the Microsoft Word document are imported into the destination requirement
set under a top-level node, Import1.

 Import and Update Requirements from a Microsoft Word Document

1-19

Update Requirements
Requirements that you import as read-only references retain their references to the source
requirements document. To change your imported requirements, you must make the changes in the
source document first and update your requirement set from within Simulink Requirements. For more
information on updating requirements, see “Update Imported Requirements” on page 1-17

1 In the document, Reject_Double_Button_Press_Model_Requirements.docx, add a new
requirement:

2.1.5 The Red and Green Button outputs shall be 0 if no buttons are pressed.
2 Create a bookmark called Red_and_Green_Button_Output_2_1_5 for the new requirement

and save the Microsoft Word document.
3 In the Requirements Editor, select the top-level node (Import1) of the destination requirement

set. Update the requirements by clicking Update in the Properties side bar on the right.
4 Select Import1 and view the changes in the Comments side bar. The Revision number and the

UpdatedOn values are updated for the requirement set.

See Also
slreq.ReqSet

More About
• “Import Requirements from Third-Party Applications” on page 1-7
• “Define Requirements Hierarchy” on page 1-12

1 Requirements Definition

1-20

Export Requirement Sets and Link Sets to Previous Versions of
Simulink Requirements

Export requirement sets and link sets to work with them in previous versions of Simulink
Requirements. Starting in R2018b, you can export requirement sets to previous versions of Simulink
Requirements (R2017b and beyond).

Export Link Sets
Export link sets to previous versions of Simulink Requirements by exporting the Simulink models that
the link sets are associated with to previous versions of Simulink. See “Export a Model to a Previous
Simulink Version” (Simulink).

Export Requirement Sets
You can export requirement sets to previous versions from within the Requirements Editor. Navigate
to the Requirements View and select the requirement set for export. Before you attempt the Export
operation, ensure that the requirement set you want to export is not open in a model. In the
Requirements Editor window, select File > Export to Previous. From the dialog box, select the file
name and version you want to export to.

If you export a requirement set with outgoing links to a previous version, Simulink Requirements
creates a requirement set and link set files corresponding to that previous version.

 Export Requirement Sets and Link Sets to Previous Versions of Simulink Requirements

1-21

Use Command-line API to Document Simulink Model in
Requirements Editor

This example uses Simulink® and Simulink Requirements® APIs to automatically capture and link
Simulink model structure, for the purpose of documenting the design in Simulink Requirements
Editor. Automation will also help to repair or migrate requirements traceability data after replacing
or modifying linked artifacts. The use of the following command-line APIs is demonstrated:

• slreq.new(REQSETNAME) for creating a new Requirement Set
• ReqSet.add(NAME,VALUE) for adding entries to a Requirement Set
• Requirement.add(NAME,VALUE) for adding child requirements
• Requirement.Description(TEXT) for filling-in the Description field
• slreq.createLink(SRC,DEST) for creating link from SRC to DEST
• slreq.find('type',TYPENAME) for locating Simulink Requirements objects
• link.setDestination(DEST) for re-connecting the destination end of an existing link
• link.setSource(SOURCE) for moving an existing link to the new source object
• link.isResolvedSource() for identifying links whose source object cannot be found
• slreq.show() used to view either the source or the destination end of a given slreq.Link

In a few places we also use the legacy RMI(ARGS) APIs that are inherited from Requirements
Management Interface (RMI) part of the retired SLVnV Product.

USE CASE 1: Link with Simulink Model Surrogate in Simulink Requirements

You want to use the Simulink Requirements product to create a detailed description of your Simulink
design, and you want to organized your Requirements collection in a hierarchy that matches your
Simulink models. You also want an easy way to navigate between the items of this Requirements
collection and the corresponding elements in your design.

For the purpose of this demonstration, consider slvnvdemo_powerwindow_vs.slx specification model
designed for verifying the functional properties of slvnvdemo_powerwindowController.slx.

We use the legacy VNV/RMI product API, rmi('getObjectsInModel',MODEL), to get a herarchical
list of objects in MODEL, then use Simulink Requirements slreq.* APIs to automatically generate
the surrogate (representation) for each of our Simulink models.

We can then provide related design requirements information in the Descritpion or Rational fields of
auto-generated proxy items.

1 Requirements Definition

1-22

Below is the script that builds one Requirement Set with two model surrogates. The bottom three
commands provide an example of how to programmatically fill-in the Description field for a proxy
item, but most probably you will do this interactively in the Editor.

models = {'slvnvdemo_powerwindow_vs', 'slvnvdemo_powerwindowController'};
workDir = tempname;
disp(['Using ' workDir ' to store generated files.']);
mkdir(workDir);
addpath(workDir);
for modelIdx = 1:length(models)
 modelName = models{modelIdx};
 reqSetFile = fullfile(workDir, [modelName '.slreqx']);
 slProxySet = slreq.new(reqSetFile); % create separate ReqSet file with matching name
 open_system(modelName); % will create a proxy item for each object in this Simulink model
 modelNode = slProxySet.add('Id', modelName, 'Summary', [modelName ' Description']);
 [objHs, parentIdx, isSf, SIDs] = rmi('getobjectsInModel', modelName);
 for objIdx = 1:length(objHs)
 if parentIdx(objIdx) < 0 % top-level item is the model iteself
 indexedReqs(objIdx) = modelNode; %#ok<SAGROW>
 else
 parentReq = indexedReqs(parentIdx(objIdx));

 Use Command-line API to Document Simulink Model in Requirements Editor

1-23

 if isSf(objIdx)
 sfObj = Simulink.ID.getHandle([modelName SIDs{objIdx}]);
 if isa(sfObj, 'Stateflow.State')
 name = sf('get', objHs(objIdx), '.name');
 elseif isa(sfObj, 'Stateflow.Transition')
 name = sf('get', objHs(objIdx), '.labelString');
 else
 warning('SF object of type %s skipped.', class(sfObj));
 continue;
 end
 type = strrep(class(sfObj), 'Stateflow.', '');
 else
 name = get_param(objHs(objIdx), 'Name');
 type = get_param(objHs(objIdx), 'BlockType');
 end
 indexedReqs(objIdx) = parentReq.add(...
 'Id', SIDs{objIdx}, 'Summary', [name ' (' type ')']); %#ok<SAGROW>
 end
 end
 slProxySet.save(); % save the autogenerated Requirement Set
end
slreq.editor(); % open editor to view the constructed Requirement Set
slProxySet = slreq.find('type', 'ReqSet', 'Name', 'slvnvdemo_powerwindow_vs');
roItem = slProxySet.find('type', 'Requirement', 'Summary', 'upD (Inport)'); % will provide Description text for this item
roItem.Description = 'Driver''s UP button should close the window all the way if released within 0.5 seconds';

Using C:\Users\astarovo\AppData\Local\Temp\tpa1d56261_e0a7_4d8c_94c2_52b7abc0e7ef to store generated files.

1 Requirements Definition

1-24

 Use Command-line API to Document Simulink Model in Requirements Editor

1-25

Create Traceability Between Model Objects and Proxy Items

Now we can browse the structure of each model in the Requirement Editor, and we can edit the
Description fields to provide additional details about each design element. What's missing is an easy
way to navigate between the objects in Simulink diagrams and the proxy/surrogate items in Simulink
Requirements. The script below demonstrates the use of slreq.createLink(SRC,DEST) API to
automatically add navigation links. We can choose any desired level of granularity. For the purpose of
this example, we will limit linking to SubSystem blocks.

1 Requirements Definition

1-26

We can also enable highlighting to visualize which Simulink objects received navigation links.

 Use Command-line API to Document Simulink Model in Requirements Editor

1-27

Navigate the link from Simulink block to review the corresponding proxy item in Simulink
Requirements Editor. Note the hyperlink to the associated block in the Links panel at the bottom-
right.

1 Requirements Definition

1-28

for modelIdx = 1:length(models)
 modelName = models{modelIdx};
 counter = 0;
 slProxySet = slreq.find('type', 'ReqSet', 'Name', modelName);
 proxyItems = slProxySet.find('type', 'Requirement');
 for reqIdx = 1:numel(proxyItems)
 roItem = proxyItems(reqIdx);
 if contains(roItem.Summary, '(SubSystem)') % || contains(roItem.Summary, '(State)')
 sid = [modelName roItem.Id];
 disp([' linking ' sid ' ..']);
 srcObj = Simulink.ID.getHandle(sid);
 link = slreq.createLink(srcObj, roItem);
 link.Description = 'slreq proxy item';
 counter = counter + 1;
 end
 end
 disp(['Created ' num2str(counter) ' links for ' modelName]);
 rmi('highlightModel', modelName);
end

 Use Command-line API to Document Simulink Model in Requirements Editor

1-29

 linking slvnvdemo_powerwindow_vs:394 ..
 linking slvnvdemo_powerwindow_vs:394:224 ..
 linking slvnvdemo_powerwindow_vs:394:272 ..
 linking slvnvdemo_powerwindow_vs:394:271 ..
 linking slvnvdemo_powerwindow_vs:394:360 ..
 linking slvnvdemo_powerwindow_vs:397 ..
 linking slvnvdemo_powerwindow_vs:397:107 ..
 linking slvnvdemo_powerwindow_vs:397:300 ..
 linking slvnvdemo_powerwindow_vs:397:108 ..
 linking slvnvdemo_powerwindow_vs:397:285 ..
 linking slvnvdemo_powerwindow_vs:397:307 ..
 linking slvnvdemo_powerwindow_vs:399 ..
 linking slvnvdemo_powerwindow_vs:399:650 ..
 linking slvnvdemo_powerwindow_vs:399:214 ..
 linking slvnvdemo_powerwindow_vs:399:218 ..
 linking slvnvdemo_powerwindow_vs:399:273 ..
 linking slvnvdemo_powerwindow_vs:160 ..
 linking slvnvdemo_powerwindow_vs:160:643 ..
 linking slvnvdemo_powerwindow_vs:160:646 ..
 linking slvnvdemo_powerwindow_vs:160:590 ..
 linking slvnvdemo_powerwindow_vs:160:591 ..
 linking slvnvdemo_powerwindow_vs:160:648 ..
 linking slvnvdemo_powerwindow_vs:160:592 ..
Created 23 links for slvnvdemo_powerwindow_vs
 linking slvnvdemo_powerwindowController:39 ..
 linking slvnvdemo_powerwindowController:40 ..
 linking slvnvdemo_powerwindowController:36 ..
Created 3 links for slvnvdemo_powerwindowController

USE CASE 2: Reuse Existing Links After Replacing Linked Destination Artifact

In the course of design project development, there may be need to migrate to a new set of
Requirements. If current Requirements have links, and when there is a known rule to associate
original linked requirements with the corresponding entries in the new Requirement Set, you may
want to automatically migrate the links where possible, to avoid redoing all the linking manually.
Migrating existing links is preferred over re-creating new links, because you keep the existing
metadata such as keywords, rationale statements, comment history.

To quickly put together an example situation where you may need to migrate links, we will start with
the Requirements imported from a Microsoft Word document, then create some links.

1 Requirements Definition

1-30

We then create some links, either interactively (by drag-and-drop in Requirements Perspective mode)
or using the API, to allow navigation between Simulink objects and imported requirements.

 Use Command-line API to Document Simulink Model in Requirements Editor

1-31

Navigation from Simulink object is done either via the context menu or with one click when in
Requirements Perspective mode.

1 Requirements Definition

1-32

examplesFolder = fullfile(matlabroot, 'toolbox', 'slrequirements', 'slrequirementsdemos');
docsFolder = fullfile(examplesFolder, 'powerwin_reqs');
addpath(docsFolder); % just in case
externalDocName = 'PowerWindowSpecification';
externalDoc = fullfile(docsFolder, [externalDocName '.docx']);
outputFile = fullfile(workDir, 'ReadOnlyImport.slreqx');
[~,~,roReqSet] = slreq.import(externalDoc, 'ReqSet', outputFile); % without extra arguments the default import mode is "read-only references"
roReqSet.save();
roItem = roReqSet.find('CustomId', 'Simulink_requirement_item_2');
designModel = 'slvnvdemo_powerwindowController';
link1 = slreq.createLink([designModel '/Truth Table'], roItem); % link to read-only item in imported set
link2 = slreq.createLink([designModel '/Truth Table1'], roItem); % link 2nd block to the same read-only item
slreq.show(link1.source()); % highlight te source of 1st link
slreq.show(link1.destination()); % navigate to the target of 1st link
rmi('view', [designModel '/Truth Table1'], 2); % navigate 2nd link from Truth Table1 using legacy RMI('view') API

Updating Links for Navigation to Alternative Imported Requirement Set

Note that we imported our Word document "as read-only references", which is the default for
slreq.import(DOCFILEPATH) command when run without optional arguments. This import mode
allows to later update the imported items when the newer version of the source document becomes
available. Now, supposed that we changed our mind: we want our imported items to be fully editable
in Simulink Requirements Editor, including additions, deletions, and structural moves. Although you
can Unlock and edit properties of items imported "as references", you cannot reorder the imported
items or add new ones, and if you delete an item, it will re-appear when performing the next update
from the modified external document. When unrestricted editing capability is needed, we use a
different import mode: "as editable requirements", by providing an additional AsReference
argument for the slreq.import() command, and specifying false as the value.

This generates a new Requirement Set, to be managed exclusively in Simulink Requirements. There
is no connection with the original external document, and you are free to add/move/delete entries as
needed. Now, you do not need to Unlock imported items to modify the Description or other
properties:

 Use Command-line API to Document Simulink Model in Requirements Editor

1-33

However, there is problem: our previously created links connect from Simulink to the original read-
only References, not to the more recentlay imported editable Requirements. The solution is to create
and run a script that redirects the existing links to corresponding items in the newly imported
(editable) set. We use link.setDestination(DEST) API to perform the required updates.

After we loop over all links in the LinkSet, and adjust the affected links to connect with corresponding
editable items, when we navigate from the model block, the correct item in editable set opens, and
incoming links from both blocks are shown.

1 Requirements Definition

1-34

Below is the example script that accomplishes this task.

outputFile = fullfile(workDir, 'EditableImport.slreqx');
[~,~,mwReqSet] = slreq.import(externalDoc, 'ReqSet', outputFile, 'AsReference', false); % re-import as Editable Requirements
mwReqSet.save();
linkSet = slreq.find('type', 'LinkSet', 'Name', designModel); % LinkSet for our design model
links = linkSet.getLinks(); % all outgoing links in this LinkSet
updateCount = 0;
for linkIdx = 1:numel(links)
 link = links(linkIdx);
 if strcmp(link.destination.reqSet, [roReqSet.Name '.slreqx']) % if this link points to an item in read-only ReqSet
 sid = link.destination.sid; % internal identifier of linked read-only item
 roItem = mwReqSet.find('SID', sid); % located the linked read-only item
 id = roItem.Id; % document-side identifier of imported read-only item
 mwItem = mwReqSet.find('Id', id); % located a matching item in Editable Requirement Set
 link.setDestination(mwItem);
 updateCount = updateCount + 1;
 end
end
disp(['Updated ' num2str(updateCount) ' links from ' designModel]);
slreq.show(link.destination()); % check updated destination of the last link we modified
rmi('view', [designModel '/Truth Table1'], 2); % navigate again (legacy API), editable item selected in RE

Updated 2 links from slvnvdemo_powerwindowController

USE CASE 3: Reuse Existing Outgoing Links After Replacing Source Objects

Consider the sitution when you have a SubSystem with lots of links to Requirements, and this
subsystem needed to be redesigned or entirely replaced. The new implementation is mostly similar,
and you would like to preserve the existing links where possible (where a blocks with same name

 Use Command-line API to Document Simulink Model in Requirements Editor

1-35

exists in the same level of model structure hierarchy). This will allow to limit manual linking steps to
only the blocks that did not exist in the original implementation. You use link.setSource(SRC) API
to re-attach the existing links at new source objects after replacing the SubSystem. Note that you
cannot simply keep using the old links, because links rely on unique persistent session-independent
identifiers (SIDs) to associate the link source object (the Simulink object that "owns" the link), and
your replacement SubSystem has new SIDs for each object.

To demostrate the use of link.setSource(SRC) API with our example model, we will simply
replace two Truth Table blocks that we linked in the previous section with same exact new blocks.
Once this is done, the links become unresolved, because new Truth Table copies have new SIDs.

Switch to Links View in Requirements Editor and notice the orange triangle indicators for all the
broken links. There is a total of 4, because each of the replaced blocks had 2 links: one link to the
surrogate item in slvnvdemo_powerwindowController.slreqx and another link to an imported
requirement in ReadOnlyImport.slreqx.

originalModel = 'slvnvdemo_powerwindowController';
updatedModel = 'UpdatedModel';
save_system(originalModel, fullfile(workDir, [updatedModel '.slx'])); % this also creates .slmx file in workDir
delete_line(updatedModel, 'Mux1/1', 'Truth Table/1'); % disconnect original block
delete_line(updatedModel, 'Truth Table/1', 'control/3'); % disconnect original block
add_block([updatedModel '/Truth Table'], [updatedModel '/New Truth Table']); % create replacement block
delete_block([updatedModel '/Truth Table']); % delete oritinal block
add_line(updatedModel, 'Mux1/1', 'New Truth Table/1'); % reconnect new block
add_line(updatedModel, 'New Truth Table/1', 'control/3'); % reconnect new block
set_param([updatedModel '/New Truth Table'], 'Name', 'Truth Table'); % restore original name
delete_line(updatedModel, 'Mux4/1', 'Truth Table1/1'); % disconnect original block
delete_line(updatedModel, 'Truth Table1/1', 'control/4'); % disconnect original block
add_block([updatedModel '/Truth Table1'], [updatedModel '/New Truth Table1']); % create replacement block
delete_block([updatedModel '/Truth Table1']); % delete original block
add_line(updatedModel, 'Mux4/1', 'New Truth Table1/1'); % reconnect new block

1 Requirements Definition

1-36

add_line(updatedModel, 'New Truth Table1/1', 'control/4'); % reconnect new block
set_param([updatedModel '/New Truth Table1'], 'Name', 'Truth Table1'); % restore original name

Update Source Ends to Repair Broken Links

Now we need to iterate all the links in the new model, identify the ones with unresolved source using
link.isResolvedSource() API, then use link.setSource(SRC) command to fix each broken
link. Because we cannot rely on the old SIDs to find the needed new sources of the link, we open the
original model to discover the original block''s path and name, then locate the corresponding
replacement block in the updated model.

See the example script below. When you run this script, it reports 4 links fixed. Check the Links View
in Simulink Requirements Editor and confirm that all the links are now resolved, there are no orange
icon indicators anywhere.

 Use Command-line API to Document Simulink Model in Requirements Editor

1-37

open_system(originalModel);
updatedLinkSet = slreq.find('type', 'LinkSet', 'Name', updatedModel);
links = updatedLinkSet.getLinks();
fixCount = 0;
for linkIdx = 1:numel(links)
 link = links(linkIdx);
 if ~link.isResolvedSource()
 missingSID = link.source.id;
 origBlockHandle = Simulink.ID.getHandle([originalModel missingSID]);
 origBlockPath = getfullname(origBlockHandle);
 [~,blockPath] = strtok(origBlockPath, '/');
 updatedBlockPath = [updatedModel blockPath];
 updatedModelSID = Simulink.ID.getSID(updatedBlockPath);
 updatedBlockHandle = Simulink.ID.getHandle(updatedModelSID);
 link.setSource(updatedBlockHandle);
 fixCount = fixCount + 1;
 end
end
updatedLinkSet.save();
disp(['Fixed ' num2str(fixCount) ' links in ' updatedModel '.slmx']);

Fixed 4 links in UpdatedModel.slmx

1 Requirements Definition

1-38

Cleanup

To cleanup after performing the above steps, we close all models and remove all files that were
created by scripts in this example. slreq.clear() command will remove all Requirements and
Links data from MATLAB session memory, so as to avoid conflicting with what you do next.

slreq.clear();
bdclose('all');
rmpath(workDir);
rmpath(docsFolder);
rmdir(workDir,'s');
slreq.import.docToReqSetMap(externalDoc,'clear'); % clear stored import location for our document to avoid prompt on rerun

 Use Command-line API to Document Simulink Model in Requirements Editor

1-39

Round Trip Workflows with ReqIF Files
Simulink Requirements supports round trip workflows with ReqIF files. ReqIF is an open standard
XML format developed for lossless exchange of requirements and their associated metadata between
requirements management applications. You can import, edit, and export requirements by using
ReqIF files.

Import Requirements from ReqIF Files
Many third-party requirements management applications can export and import requirements using
the ReqIF format. You can import requirements from a ReqIF file as references to a third-party
source, or as new requirement sets.

Third-party applications that use ReqIF with particular attribute mapping include:

• Polarion
• PREEvision
• IBM Rational DOORS
• IBM Rational DOORS Next Generation

Other third-party applications can use generic ReqIF mapping.

Third-party Specific Server Configuration

Polarion: When working with Polarion, modify the Polarion server configuration to use the actual
server name in repo and base.url property values. Do not use localhost.

1 Open the polarion.properties file found in the <polarion_installation>/polarion/
configuration/ folder.

2 Modify these lines:

• repo=http://localhost:80/repo/
• base.url=http://localhost:80/

by replacing localhost with the externally known name for your server.

ReqIF Import Workflow

To import requirements from a ReqIF file:

1 In the Requirements Editor, select File > Import.
2 For Document type, select ReqIF file (*.reqif or *.reqifz).
3 For Document location, select the ReqIF file location.
4 Simulink Requirements detects the source tool of the ReqIF file. You can also manually select a

Source tool, or select Generic if the source is unknown.
5 Select the location for the destination requirement set.
6 Select whether to allow updates to the imported requirements:

1 If your requirements are maintained in an external tool, and you want to be able to update
the imported requirement set with updated versions of the ReqIF file, select Allow updates
from external source.

2 To establish the Simulink Requirements set as the primary requirements artifact, do not
select Allow updates from external source.

1 Requirements Definition

1-40

7 Complete the import process by clicking Import.

Importing Multiple ReqIF Specifications

You can import multiple source specifications from ReqIF files. When you import ReqIF files that
contain multiple source specifications, you can choose to:

1 Select a single ReqIF source specification to import into a requirement set.
2 Combine ReqIF source specifications into one requirement set. Each specification is imported

into its own Import node. You can update each Import node independently.
3 Import each ReqIF source specification into a separate requirement set. Instead of selecting a

destination requirement set, you select a destination folder. The import operation creates
multiple requirement set files in the destination folder.

If a ReqIF file contains a single specification, options 2 and 3 above are not available.

For large ReqIF files, import each source specification into a separate requirement set. This can help
reduce file conflicts and simplify change tracking and differencing of individual requirement sets.

In ReqIF, a link is represented as a SpecRelation between two SpecObjects.. Select Import links to
preserve links in the ReqIF file. Import links is enabled if the ReqIF file has SpecRelations between
SpecObjects. After import, Simulink Requirements link set files contain links between requirements
or external URLs.

If the ReqIF file does not define SpecRelations, the Import links option is disabled. Only valid links
are imported. The link import operation depends on how you import the source specifications:

1 Importing a single specification into a requirement set imports only the SpecRelations within the
specification's SpecObjects. As a result, some links can be omitted.

2 Combining ReqIF source specifications into one requirement set imports resolved links into one
link set.

3 Importing each ReqIF source specification into a separate requirement set imports resolved links
are into separate linksets.

Customize Attribute Display

ReqIF represents a requirement as a SpecObject with user-defined attributes. You can customize
how the Requirements Editor and Requirements Browser displays imported requirements data and
properties.

To customize the display of imported requirements data, map the attributes of the SpecObject to
either built-in or custom attributes of a requirement. You can save this mapping as an XML file for
future use.

To modify the attribute mapping after you import, select the top-level Import node of the requirement
set (denoted by) and expand the Attribute Mapping pane. You can also load a previously saved
attribute mapping by clicking Load mapping.

Edit Imported Content
Edit imported requirements content by using the editing capabilities of the Requirements Editor. You
can unlock and edit a requirement's information such as its Description or Rationale. You can also

 Round Trip Workflows with ReqIF Files

1-41

define custom attributes on the requirement set and set values for those custom attributes on
selected requirements.

Unlock and Edit Imported Requirements

Before you edit an imported requirement, you must unlock it. To unlock all requirements in the
requirement set, select the top-level Import node of the requirement set and click Unlock all in the
Requirement Interchange pane. To unlock individual requirements, navigate to the requirement
and click Unlock in the Properties pane.

To add, remove, and edit custom attributes associated with the requirement set, navigate to the top-
level node of the requirement set and use the actions available in the Custom Attribute Registries
pane. Select an individual requirement and unlock it set custom attribute values.

Update Imported Requirements Content

If you selected Allow updates from external source during the Import operation, you can update
your imported requirement sets with data from the source ReqIF file. Navigate to the top-level Import
node of the requirement set and click Update. The Update operation overwrites all local
modifications such as edits to unlocked requirements with values from the ReqIF source file. The
Update operation preserves comments and local attributes.

Export Requirements Content
You can export a requirement set or an individual requirement and its child requirements to ReqIF
files from Simulink Requirements. Navigate to the node that you want to export and select File >
Export to ReqIF.

In the Export to ReqIF dialog box, you can select the export mapping and the output ReqIF file
name and path. If you are exporting requirement artifacts that you previously imported (round trip
workflow), it is recommended to use the same import settings for the Export operation.

The Export operation inverts the attribute mapping used by the Import operation. Any local custom
attributes that you added to or defined in the Custom Attribute Registry are also included in the
export mapping so that they are visible in external requirements management applications.

See Also
slreq.import

More About
• “Import Requirements from Third-Party Applications” on page 1-7
• “Update Imported Requirements” on page 1-17
• “Best Practices and Guidelines for ReqIF Round Trip Workflows” on page 1-43

1 Requirements Definition

1-42

Best Practices and Guidelines for ReqIF Round Trip Workflows
Managing Requirement Custom IDs
• When you import requirements as referenced requirements, Simulink Requirements attempts to

map a requirement identifier generated by the third-party requirements management application
to the Custom ID attribute of the requirement. Verify that the intended attribute mapping between
the Custom ID and the requirement identifier is selected.

• Do not modify the requirement custom ID attribute to maintain traceability.

Guidelines for Updating Referenced Requirements Content
• The Update operation overwrites local modifications such as edits to unlocked referenced

requirements with values from the ReqIF source file. Save, check-in, or export your requirement
set files before attempting the Update operation.

• The Update operation preserves comments and attributes. Do not delete imported custom
attributes as they will be restored when you update the requirement set. For a complete ReqIF
round trip workflow, include all previously imported attributes.

Guidelines for Editing Referenced Requirements Content
• Rich text attributes like the Description and Rationale may lose some formatting, particularly

tables, during the round trip workflow. To preserve formatting, edit these attributes in the same
application. Plain text attributes can be edited in multiple applications.

• Rename imported attributes through the Attribute Mapping pane of the Requirements Editor to
maintain the connection to the corresponding attribute in the external requirements document
during the Export operation.

Guidelines for Adding Details to Imported Requirements
You can add additional details to imported requirements by:

• Adding additional attributes
• Authoring new requirements and linking imported requirements to them

You cannot insert locally authored requirements as children of imported requirements. To associate
newly authored requirements with imported requirements, add them to a separate requirement set
and link related requirements.

Guidelines for Exporting Requirements to ReqIF Files
• Do not import requirements from multiple ReqIF files into the same requirement set. Each ReqIF
file can contain multiple specifications which get imported under separate top Import nodes in the
requirement set. Every Import node has a Custom ID that matches the name of the specification.

• Do not import referenced requirements into a requirement set that contains locally authored
requirements. For round trip workflows, reuse the previous import settings to requirements that
were previously imported.

• You cannot update requirements you author within Simulink Requirements if you export them to
ReqIF. Import the exported file as referenced requirements into a new requirement set that you

 Best Practices and Guidelines for ReqIF Round Trip Workflows

1-43

can update in the future. Links created to authored requirements will not be preserved when you
re-import them. Export and re-import the locally authored requirements before you create links.

See Also

More About
• “Import Requirements from Third-Party Applications” on page 1-7
• “Round Trip Workflows with ReqIF Files” on page 1-40
• “Update Imported Requirements” on page 1-17

1 Requirements Definition

1-44

Create and Edit Attribute Mappings
The ReqIF format represents a requirement as a SpecObject, which has user-defined attributes. You
can customize how requirements imported from ReqIF are displayed in Simulink Requirements by
mapping SpecObject attributes to either built-in or custom attributes of requirement objects. You
can also save this mapping for reuse.

Simulink Requirements provides attribute mappings for ReqIF files from:

• Polarion REQUIREMENTS™
• PREEvision
• IBM Rational DOORS
• IBM Rational DOORS Next Generation
• Jama Software

To work with ReqIF files created from different external requirements management tools, use the
Generic attribute mapping from the Source tool drop-down list. If Generic does not create the
desired attribute mapping, create a custom mapping:

1 Open the Requirements Editor and import the ReqIF file by selecting the Blank attribute
mapping from the Source tool drop-down list. See “Import Requirements from ReqIF Files” on
page 1-8.

2 Navigate to the top Import node of the imported requirement set and expand the Attribute
Mapping pane on the right.

3 Map each external attribute in the External Attribute Name column to a built-in or a custom
attribute by using the drop-down list in the Mapped To column.

4 Click Save Mapping. Save the mapping in matlabroot/toolbox/slrequirements/
attribute_maps as an XML file.

5 Restart MATLAB to include the newly created attribute mapping in the Source tool drop-down
list.

To change the name or description of the attribute mapping, open the XML file that you created in a
text editor and modify the values of the <name> and <description> tags.

To have Simulink Requirements select the import attribute mapping based on the tool which
originally created the ReqIF file you are importing:

1 In a text editor, open the attribute mapping and the ReqIF file.
2 Find the value of the <REQ-IF-TOOL-ID> tag in the ReqIF file.
3 Change the value of the <name> tag in the attribute mapping file to match the value of the <REQ-

IF-TOOL-ID> tag.

Specify Default ReqIF Requirement Type
Some external requirements management tools such as Polarion REQUIREMENTS support multiple
types of requirements. In this case, modify the attribute mapping file to specify the default ReqIF
requirement type to use when exporting to ReqIF. For example:

<thisType>SpecObject</thisType>
<thisSubType>System Requirement</thisSubType>

 Create and Edit Attribute Mappings

1-45

The value of the <thisSubType> tag indicates that each exported SpecObject will have the
SpecObject type as System Requirement.

Specify ReqIF Template
Some external requirements management tools such as Polarion REQUIREMENTS and IBM Rational
DOORS require a specific set of ReqIF data type, attribute, and SpecObject type definitions. They
may also require that the ReqIF specification be of a certain type. You can supply these definitions by
specifying in the mapping file the name of a template .reqif file produced by the external
requirements management tool. During ReqIF export, Simulink Requirements imports the template
file and uses it to:

• Create an instance of the ReqIF data model based on the template with the expected data type,
attribute, and SpecObject type definitions.

• Remap the requirements content to the expected data types and attributes.

Using the template ensures that the exported file can be readily imported into the external
requirements management tool.

Save the template files in the same folder as the attribute mapping file (matlabroot/toolbox/
slrequirements/attribute_maps). To specify a template file in the attribute mapping, open the
attribute mapping file corresponding to the external requirements management tool in a text editor.
Modify the value of the <templateFile> tag to match the name of the template file.

See Also
“Round Trip Workflows with ReqIF Files” on page 1-40 | “Best Practices and Guidelines for ReqIF
Round Trip Workflows” on page 1-43

1 Requirements Definition

1-46

Requirements Traceability and
Consistency

• “Link Blocks and Requirements” on page 2-2
• “Track Requirement Links with a Traceability Matrix” on page 2-5
• “Requirement Links” on page 2-11
• “Define Custom Requirement and Link Types” on page 2-14
• “Requirements Consistency Checks” on page 2-16
• “Manage Navigation Backlinks in External Requirements Documents” on page 2-20
• “Use Command-line API to Update or Repair Requirements Links” on page 2-21

2

Link Blocks and Requirements
You can track requirements implementation by linking requirements to model elements that
implement the requirements. Linking also enables change notification, so that you can review and act
on changes to requirements or models.

In this tutorial, link requirements to a model by using the model requirements perspective. Visual
elements highlight links between requirements and blocks.

1 Open the example project by entering

slreqCCProjectStart

Open crs_controller from the models folder.
2 In the model canvas, click the perspectives control in the lower-right corner.

3 Open the requirements perspective by clicking the Requirements icon.

The Requirements Browser appears at the bottom of the model canvas. When you select a
requirement, the Property Inspector displays the requirement's properties.

4 Link a requirement to a model element:

1 In the Requirements Browser, search for Enable Switch Detection.
2 Link to the enbl Inport block by clicking and dragging the requirement to the block. An

annotation template appears.
3 Place the requirement annotation by clicking on the canvas. Create a link without an

annotation by clicking outside the canvas.

2 Requirements Traceability and Consistency

2-2

5 The block displays a link badge. To display information about the requirement, click the badge
and select Show.

Clicking Show displays the requirement ID, requirement summary, and link type. For information
on link types, see “Requirement Links” on page 2-11.

• To see the requirement description, double-click the annotation.
• To edit the requirement, right-click the annotation and select Select in Requirements

Browser. Edit the requirement properties in the Property Inspector.
6 Exit the requirements perspective. Click the perspectives control and click the requirements

icon.

 Link Blocks and Requirements

2-3

Work with Simulink Annotations
Convert Simulink Annotations to Requirements

You can convert the annotations in your Simulink models to requirements by using the context menu
in the Requirements Perspective View and by using the API. See slreq.convertAnnotation for
more information on converting annotations to requirements by using the API.

To convert annotations to requirements by using the context menu in the Requirements Perspective
View:

1 Open the Simulink model and enter the Requirements Perspective View.
2 Select a requirement set from the Requirements Browser. This is the destination requirement set

for the new requirement.
3 Right click the annotation you want to convert to a requirement and click Convert to

Requirement.
4 The annotation is converted to a requirement and is linked to the system or subsystem at which

the annotation was present.

Link Requirements to Simulink Annotations

Use the Requirements Perspective View to link requirements to text and area annotations on the
Simulink Editor. To create a link, select a requirement and drag it onto the annotation. If you link
requirements to an area annotation, a badge appears on the annotation to show that the link was
created. You see badges only in the Requirements Perspective View. To see more information about
the requirement, click the badge and select Show.

2 Requirements Traceability and Consistency

2-4

Track Requirement Links with a Traceability Matrix
A traceability matrix allows you to easily view requirements and their links to blocks in your Simulink
model in a compact format. A traceability matrix summarizes requirements, links, and model or test
entities, and allows you to navigate to link sources or destinations. For example, you can:

• Identify missing or incorrect links.
• Create missing links.
• Fix incorrect links.
• Display requirements that are linked to model elements.
• Inspect links by navigating to their sources or destinations.
• Filter by requirement type, link type, or model hierarchy.
• Confirm model and requirement completeness.

For large models, you can focus on specific model elements and associated requirements by
expanding or collapsing the content in the traceability matrix. Additionally, you can filter out specific
parts of the matrix to see only what you need to see.

Generate a Traceability Matrix
To create a traceability matrix:

1 In the Requirements tab, select Share > Open Requirements Traceability Matrix.
2 Click Add to create a matrix.

The following artifacts can be used to create a traceability matrix:

• Simulink requirements
• Simulink model
• Simulink test
• Simulink data dictionary
• MATLAB files

For this matrix, the requirements are represented by the rows, while the blocks of the Simulink model
are represented by the columns. Once you have selected your artifacts, click Generate Matrix. Your
traceability matrix appears.

 Track Requirement Links with a Traceability Matrix

2-5

If you update your model or the requirements, click Update to refresh your traceability matrix.

2 Requirements Traceability and Consistency

2-6

Using the Traceability Matrix

The traceability matrix is a large grid with icons that show links. The arrow icon indicates that
there is a linked requirement between the requirement row and the model column.

Expand and Collapse Links

Initially, some rows and columns in your matrix may be compressed. The expand icon indicates
that a link exists in the row and column, but you need to expand the row or column to see the link.

When you click a link icon, you see information about the link.

When you click the expand icon, similar information appears.

When you click on the links in the information box, the corresponding information appears. For
example, if you click on the requirement, the Requirements Editor window opens and displays the
specified requirement.

Artifact Hierarchy

You can also choose to show the hierarchy of a specific artifact in your traceability matrix. Right click
on the artifact whose hierarchy you want to display. Click Focus the display.

Your traceability chart now shows this level of the requirements or Simulink model. To show the
entire hierarchy of the artifact, right click the artifact again and click Display Entire Hierarchy.

 Track Requirement Links with a Traceability Matrix

2-7

To expand the hierarchy of an artifact, right click on the artifact whose hierarchy you want to expand,
and click Expand All. To collapse the hierarchy of an artifact, right click on the artifact whose
hierarchy you want to collapse, and click Collapse All.

Applying Filters

To the left of the traceability matrix is the Filter Panel. Display specific artifacts by using the Filter
Panel. For example, if you click Has No Links under Column, the traceability matrix shows columns
without links. You can choose to filter your requirements, your Simulink model, or specific links.

When you add a filter to the traceability matrix, it appears at the top of the matrix.

Highlight Missing Links

To highlight cells in your traceability matrix that are missing links, click Missing Links. The artifacts
in your traceability matrix without links are highlighted in yellow.

2 Requirements Traceability and Consistency

2-8

These artifacts appear highlighted even if you display a specific hierarchy that does not include the
missing link. View the hierarchy for the entire traceability matrix, to see all missing links. See
“Artifact Hierarchy” on page 2-7.

Add a New Link

Create a link by clicking on a cell, then click Create to create a link between the Simulink object and
a requirement.

 Track Requirement Links with a Traceability Matrix

2-9

The Create Link window automatically populates the link source and destination. If necessary, you

can reverse the link source and destination by clicking the reverse button .

Limitations
The traceability matrix does not support the following:

• MATLAB Function blocks
• MATLAB scripts

Additionally, invalid links are not displayed in traceability matrices.

See Also

More About
• “Link Blocks and Requirements” on page 2-2
• “Define Custom Requirement and Link Types” on page 2-14
• “Requirement Links” on page 2-11

2 Requirements Traceability and Consistency

2-10

Requirement Links
Track how your requirements relate to your model design by using Simulink Requirements to create
links between your requirements and various Simulink model elements, including blocks, Stateflow
objects, Simulink Test™ test objects, Simulink data dictionary entries, MATLAB code lines, and other
requirements.

You can create links to blocks and Stateflow objects from the Simulink Editor by dragging
requirements from the Requirements Browser in the Requirements Perspective View. You can
create links to Simulink Test test objects from the Test Manager or from the Requirements Editor. For
more information on linking Simulink model elements to requirements, see “Link Blocks and
Requirements” and “Link to Test Cases from Requirements”.

Requirement links are connected to the requirement SID (Session Independent Identifier) and not to
its Custom ID.

Linkable Items
You can create links between requirements items, model entities, test artifacts, and code:

• Simulink Requirements objects:

• slreq.Requirement objects
• slreq.Reference objects
• slreq.Justification objects

• Simulink entities

• Blocks and ports
• Subsystems
• Signals
• Data dictionaries

• Stateflow objects:

• States
• Charts and subcharts
• Transitions

• Simulink Test objects:

• Test files
• Test suites
• Test cases

• MATLAB structures
• MATLAB code lines
• System Composer™ architecture models

You can set external artifacts like URLs as link destinations by creating MATLAB structures. There
are two approaches available:

 Requirement Links

2-11

1 Create a link destination structure.

myLinkDest = struct('domain', 'linktype_rmi_url', 'artifact', ...
 'www.mathworks.com', 'id', '')

myLinkDest =

 struct with fields:

 domain: 'linktype_rmi_url'
 artifact: 'www.mathworks.com'
 id: ''

% Create a link between requirement myReq and mylinkDest
slreq.createLink(myReq, myLinkDest);

2 Create a requirement links data structure using rmi('createempty'). See rmi.

Link Types
To track how the elements of your design are associated with your requirements, you can specify link
types for your requirement links. Link types also describe the nature of requirement-to-requirement
links, such as where a requirement is derived from a higher-level requirement.

Simulink Requirements provides these link types.

Link Types in Simulink Requirements
Type Description
Related to General relationship between a requirement and

a model element. This link is bidirectional.
Implemented by Specifies which model elements implement this

requirement. These link types contribute to the
Implementation Status metric.

Implements

Verified by Specifies which verification model elements or
test cases verify that this requirement is satisfied.
These link types contribute to the Verification
Status metric.

Verifies

Derived from Specifies which destination artifacts are derived
from this source artifact.Derives

Refines Specifies which destination artifacts add
additional detail for the functionality specified by
the source artifact.

Refined by

Confirms Specifies relationship between a requirement set
and an external result source. These link types
contribute to the Verification Status metric.

Confirmed by

You can also create custom link types. For more information, see “Define Custom Requirement and
Link Types” on page 2-14.

Requirement links have a source artifact and a destination artifact. Most of the link types are defined
relative to the link direction. The Related to link type denotes a general relationship between two
entities.

2 Requirements Traceability and Consistency

2-12

The Implements/Implemented by and Verifies/Verified by link types describe requirement-model
relationships. Specify the source and the destination artifacts correctly for requirements with these
link types because the Implementation Status and Verification Status summary metrics are derived
from these link types. For more information on the Implementation Status and Verification Status
summary metrics, see “Review Requirement Implementation Status Metrics Data” on page 3-2 and
“Summarize Requirements Verification Status” on page 3-3.

Review Requirement Links
Review your requirement links from the Links View. The Links View is available in the Requirements
Editor and the Requirements Browser in the Requirements Perspective view. The Links View of the
Requirements Browser in the Requirements Perspective view displays only the outgoing links from
your source artifacts. Toggle between the Requirements and Links Views by using the View drop-
down list in the toolbar.

When working in the Simulink Editor, you can review requirement links for individual requirements
by using the Property Inspector in the Requirements Perspective view. Other links associated with
your requirements are available in the Requirements View, in the Links pane. By default, all the
outgoing links from a source artifact are stored in a Link Set file (.slmx). See “Requirements Link
Storage” on page 5-4 for more information on requirements links storage.

When you delete a link, Simulink Requirements does not preserve the CommentedBy,
CommentedOn, or SID for the link.

Resolve Links
A resolved link has an available source and destination. If a link source or destination is not available,
the link is unresolved. For example:

• A link becomes unresolved if you delete a linked block from a model.
• A link is unresolved if a source or destination file, such as a Simulink Test test file, is not loaded in

memory.

In the Links View, unresolved links are denoted by . Use the setSource and setDestination
methods to resolve links.

Load and Unload Link Information
All link information related to a requirement set, including link set files, Simulink models, and test
files on the MATLAB or Project path are automatically loaded when you load the requirement set into
memory. Link information is not automatically loaded if you save your links with the model as an
embedded link set. You can also load link information by using the
slreq.refreshLinkDependencies command. Link information is automatically unloaded when
you unload the requirement set from memory.

See Also
“Define Custom Requirement and Link Types” on page 2-14 | slreq.refreshLinkDependencies
| setDestination | setSource

 Requirement Links

2-13

Define Custom Requirement and Link Types
To define custom requirement and link types in addition to the built-in requirement and link types
described in “Requirement Types” on page 1-6 and “Link Types” on page 2-12, you customize your
Simulinkuser interface by registering a Simulink customization. For more information, “Registering
Customizations” (Simulink).

In this example, you define custom requirement and link types by creating an sl_customization.m
file in the current working folder. The following sl_customization.m file creates a custom
requirement type called Heading and two custom link types called Satisfy and Solve. You can define
custom requirement and link types to exclude requirements from contributing to the Implementation
and Verification status metrics as shown in this code example.

function sl_customization(cm)
 cObj = cm.SimulinkRequirementsCustomizer;
 cObj.addCustomRequirementType('Heading', slreq.custom.RequirementType.Container, ...
 'Headings of functional requirements')
 cObj.addCustomLinkType('Satisfy', slreq.custom.LinkType.Verify, 'Satisfies', ...
 'Satisfied by', 'Links to Verification objects')
 cObj.addCustomLinkType('Solve', slreq.custom.LinkType.Implement, 'Solves', ...
 'Solved by', 'Description')
end

• The Heading custom requirement type is defined as a subtype of the built-in Container
requirement type. Heading requirements do not contribute to the Implementation status metric.
All Functional requirements that are grouped under them do.

• The Satisfy custom link type comprises a source and destination artifact: Satisfies and Satisfied
by. It is defined as a subtype of the Verifies/Verified by built-in link type. All Satisfies/Satisfied
by requirement links contribute to the Verification status metric.

• The Solve custom link type comprises a source and destination artifact: Solves and Solved by. It
is defined as a subtype of the Implements/Implemented by built-in link type. All Solves/Solved
by requirement links contribute to the Implementation status metric.

You can select the custom requirement or link type from the Requirements Editor or the
Requirements Perspective view. To select the custom requirement type, navigate to the
Requirements view and select a requirement. Select the custom requirement type from the Type
drop-down list in the Properties pane.

To select the custom link type, navigate to the Links view and select a link. Select the custom link
type from the Type drop-down list in the Properties pane.

2 Requirements Traceability and Consistency

2-14

 Define Custom Requirement and Link Types

2-15

Requirements Consistency Checks

Check Requirements Consistency in Model Advisor
• “Identify requirement links with missing documents” on page 2-16
• “Identify requirement links that specify invalid locations within documents” on page 2-16
• “Identify selection-based links having description fields that do not match their requirements

document text” on page 2-17
• “Identify requirement links with path type inconsistent with preferences” on page 2-18
• “Identify IBM Rational DOORS objects linked from Simulink that do not link to Simulink”

on page 2-19

You can check requirements consistency using the Model Advisor.

Identify requirement links with missing documents

Check ID: mathworks.req.Documents

Verify that requirements link to existing documents.

Description

You used the Requirements Management Interface (RMI) to associate a design requirements
document with a part of your model design and the interface cannot find the specified document.

Available with Simulink Requirements.

Results and Recommended Actions

Condition Recommended Action
The requirements document associated with a
part of your model design is not accessible at the
specified location.

Open the Requirements dialog box and fix the
path name of the requirements document or
move the document to the specified location.

Capabilities and Limitations

You can exclude blocks and charts from this check.

Tips

If your model has links to a DOORS requirements document, to run this check, the DOORS software
must be open and you must be logged in.

Identify requirement links that specify invalid locations within documents

Check ID: mathworks.req.Identifiers

Verify that requirements link to valid locations (e.g., bookmarks, line numbers, anchors) within
documents.

2 Requirements Traceability and Consistency

2-16

Description

You used the Requirements Management Interface (RMI) to associate a location in a design
requirements document (a bookmark, line number, or anchor) with a part of your model design and
the interface cannot find the specified location in the specified document.

Available with Simulink Requirements.

Results and Recommended Actions

Condition Recommended Action
The location in the requirements document
associated with a part of your model design is not
accessible.

Open the Requirements dialog box and fix the
location reference within the requirements
document.

Capabilities and Limitations

You can exclude blocks and charts from this check.

Tips

If your model has links to a DOORS requirements document, to run this check, the DOORS software
must be open and you must be logged in.

If your model has links to a Microsoft Word or Microsoft Excel document, to run this check, those
applications must be closed on your computer.

Identify selection-based links having description fields that do not match their
requirements document text

Check ID: mathworks.req.Labels

Verify that descriptions of selection-based links use the same text found in their requirements
documents.

Description

You used selection-based linking of the Requirements Management Interface (RMI) to label
requirements in the model's Requirements menu with text that appears in the corresponding
requirements document. This check helps you manage traceability by identifying requirement
descriptions in the menu that are not synchronized with text in the documents.

Available with Simulink Requirements.

 Requirements Consistency Checks

2-17

Results and Recommended Actions

Condition Recommended Action
Selection-based links have descriptions that differ
from their corresponding selections in the
requirements documents.

If the difference reflects a change in the
requirements document, click Update in the
Model Advisor results to replace the current
description in the selection-based link with the
text from the requirements document (the
external description). Alternatively, you can right-
click the object in the model window, select
Edit/Add Links from the Requirements menu,
and use the Requirements dialog box that
appears to synchronize the text.

Capabilities and Limitations

You can exclude blocks and charts from this check.

Tips

If your model has links to a DOORS requirements document, to run this check, the DOORS software
must be open and you must be logged in.

If your model has links to a Microsoft Word or Microsoft Excel document, to run this check, those
applications must be closed on your computer.

Identify requirement links with path type inconsistent with preferences

Check ID: mathworks.req.Paths

Check that requirement paths are of the type selected in the preferences.

Description

You are using the Requirements Management Interface (RMI) and the paths specifying the location of
your requirements documents differ from the file reference type set as your preference.

Available with Simulink Requirements.

Results and Recommended Actions

Condition Recommended Action
The paths indicating the location of
requirements documents use a file reference
type that differs from the preference specified
in the Requirements Settings dialog box, on
the Selection Linking tab.

Change the preferred document file reference type
or the specified paths by doing one of the following:

• Click Fix to change the current path to the valid
path.

• In the Apps tab, click Requirements Viewer. In
the Requirements Viewer tab, click Link
Settings.

Select the Selection Linking tab, and change
the value for the Document file reference
option.

2 Requirements Traceability and Consistency

2-18

Linux Check for Absolute Paths

On Linux® systems, this check is named Identify requirement links with absolute path type. The
check reports warnings for requirements links that use an absolute path.

The recommended action is:

1 Right-click the model object and select Requirements > Edit/Add Links.
2 Modify the path in the Document field to use a path relative to the current working folder or the

model location.

Capabilities and Limitations

You can exclude blocks and charts from this check.

Identify IBM Rational DOORS objects linked from Simulink that do not link to Simulink

Identify IBM Rational DOORS objects that are targets of Simulink-to-DOORS requirements
traceability links, but that have no corresponding DOORS-to-Simulink requirements traceability links.

Description

You have Simulink-to-DOORS links that do not have a corresponding link from DOORS to Simulink.
You must be logged in to the IBM Rational DOORS Client to run this check.

Available with Simulink Requirements.

Results and Recommended Actions

The Requirements Management Interface (RMI) examines Simulink-to-DOORS links to determine the
presence of a corresponding return link. The RMI lists DOORS objects that do not have a return link
to a Simulink object. For such objects, create corresponding DOORS-to-Simulink links:

1 Click the Fix All hyperlink in the RMI report to insert required links into the DOORS client for
the list of missing requirements links. You can also create individual links by navigating to each
DOORS item and creating a link to the Simulink object.

2 Re-run the link check.

 Requirements Consistency Checks

2-19

Manage Navigation Backlinks in External Requirements
Documents

Simulink Requirements enables you to insert navigation backlinks in external requirements
documents to match requirement links in Simulink. The software also enables you to remove
unmatched backlinks from external requirements documents when there is not a matching link from
Simulink to a requirement in the document.

You can insert navigation backlinks in:

• Microsoft Word documents,
• Microsoft Excel spreadsheets, and
• IBM Rational DOORS modules.

When you insert a navigation backlink in an external requirements document, Simulink Requirements
creates two link artifacts - a link (slreq.Link object) in Simulink Requirements and a navigation
hyperlink (backlink) icon in the external requirements document. Backlink management in Simulink
Requirements helps you synchronize both these link artifacts.

To insert or remove backlinks for your requirements, navigate to the Links view in the Requirements
Editor or Requirements Perspective View. Right-click the link set file corresponding to the currently
open model and click Update Backlinks. The Backlinks checked dialog box displays the total
count of added and removed backlinks.

See Also

More About
• “Navigate to Requirements in Microsoft Office Documents from Simulink” on page 6-9
• “Link to Requirements in Microsoft Word Documents” on page 6-2
• “Link to Requirements in Excel Workbooks” on page 6-6

2 Requirements Traceability and Consistency

2-20

Use Command-line API to Update or Repair Requirements Links
This example covers a set of standard situations when links between design artifacts and
requirements become stale after one or more artifacts moved or renamed. Rather then deleting
broken links and creating new ones, we want to update existing links so that creation/modification
history and other properties (description, keywords, comments,..) are preserved. Use of the following
APIs is demostrated:

• slreq.find() to get hold of Simulink Requirements® entries and links
• ReqSet.find('type',TYPENAME) to located the wanted entry in a given ReqSet
• LinkSet.getLinks() to query all outgoing Links in LinkSet
• Link.source() brief information about link source
• Link.destination() brief information about link destination
• Link.getReferenceInfo() for "as stored" target info, which is different from "as resolved"

Link.destination()
• LinkSet.updateDocUri(ORIG_DOC, NEW_DOC) to update link destinations when target

document moved
• ReqSet.updateSrcFileLocation() to update previously imported set when source document

moved
• Reference.updateFromDocumet() to update previously imported References from updated

document
• linkSet.redirectLinksToImportedReqs(reqSet) to convert existing "direct links" to

"reference links"
• slreq.show() used to view either the source or the destination end of a given slreq.Link

In a few places we also use the legacy RMI(ARGS) APIs that are inherited from Requirements
Management Interface (RMI) part of the retired SLVnV Product.

Example Project Files

Before you begin, ensure a clean initial state by running slreq.clear command. Then type
slreqProjectStart to open the Cruise Control Project example. This will unzip a collection of linked
artifact files into a new subfolder under your MATLAB/Projects folder.

slreq.clear();
slreqCCProjectStart();

Simulink Model Linked to Requirements

We will focus on a small part of this Project's Dependency Graph: consider crs_plant.slx Simulink
model (click to open), that has several links to an external Microsoft® Word document
crs_reqs.docx.

 Use Command-line API to Update or Repair Requirements Links

2-21

Navigate one of the links to open the linked document.

2 Requirements Traceability and Consistency

2-22

Word document opens to the correct section:

 Use Command-line API to Update or Repair Requirements Links

2-23

Here is how to use command-line APIs and check for links from crs_plant.slx to crs_reqs.docx.

open_system('crs_plant');
rmi('view', 'crs_plant/status', 1);
linkSet = slreq.find('type', 'LinkSet', 'Name', 'crs_plant');
links = linkSet.getLinks();
disp('Original Links to Word document:');
for i = 1:numel(links)
 linkTarget = links(i).getReferenceInfo();
 if contains(linkTarget.artifact, 'crs_req.docx')
 source = links(i).source;
 disp([' found link from ' strrep(getfullname([bdroot source.id]),newline,'') ' to crs_req.docx']);
 end
end

Original Links to Word document:
 found link from crs_plant/Vehicle1/vehiclespeed to crs_req.docx
 found link from crs_plant/throttDrv to crs_req.docx
 found link from crs_plant/status to crs_req.docx
 found link from crs_plant/throttleCC to crs_req.docx

2 Requirements Traceability and Consistency

2-24

Navigation of Direct Links in the Presence of Imported References.

Open Simulink Requirements Editor. You will see two Requirement Sets loaded: crs_req.slreqx
and crs_req_funct_spec.slreqx. The first Requirement Set is a collection of references imported
from crs_req.docx, and the 2nd was manually created in Simulink Requirements Editor. If you now
close the Word document and navigate the same link from crs_plant/status Inport block, the
corresponding imported reference is highlighted in Requirements Editor, because navigation action
finds the matching reference in a loaded imported Requirement Set.

 Use Command-line API to Update or Repair Requirements Links

2-25

You can still use the [Show in document] button to see the linked Requirement in the context of
original document.

slreq.editor();
rmidotnet.MSWord.application('kill');
rmi('view', 'crs_plant/status', 1);

USE CASE 1: Batch-update Links after Document Renamed

Suppose that an updated version of the requirements document is received, named
crs_req_v2.docx. We now want the links in crs_plant.slx to target the corresponding sections
of the updated documnt. For the purpose of this example, we will make a copy of the original
document in same folder with a modified name. We then use LinkSet.updateDocUri(ORIG_DOC,
NEW_DOC) API to batch-update all links in a given LinkSet to connect with the newer copy of the
document:

copyfile(fullfile(pwd, 'documents/crs_req.docx'), fullfile(pwd, 'documents/crs_req_v2.docx'));
linkSet.updateDocUri('crs_req.docx', 'crs_req_v2.docx');

Verify the Correct Update of Matching Links

Now we can navigate the same link and confirm that the correct version of the external document
opens. IF we iterate all links as before, this confirms that all 4 links updated correctly:

rmi('view', 'crs_plant/status', 1); % updated document opens
links = linkSet.getLinks();
disp('Links to Word document after update:');

2 Requirements Traceability and Consistency

2-26

for i = 1:numel(links)
 source = links(i).source;
 linkTarget = links(i).getReferenceInfo();
 if contains(linkTarget.artifact, 'crs_req.docx')
 warning(['link from ' source.id ' still points to crs_req.docx']); % should not happen
 elseif contains(linkTarget.artifact, 'crs_req_v2.docx')
 disp([' found link from ' strrep(getfullname([bdroot source.id]),newline,' ') ' to crs_req_v2.docx']);
 end
end

Links to Word document after update:
 found link from crs_plant/Vehicle1/vehicle speed to crs_req_v2.docx
 found link from crs_plant/throttDrv to crs_req_v2.docx
 found link from crs_plant/status to crs_req_v2.docx
 found link from crs_plant/throttleCC to crs_req_v2.docx

Navigate to Imported References After Updating Links

As demonstrated above, when imported references are available in Requirements Editor, navigating a
link will select the matching reference object. However, we have just updated links for a new version
of the document crs_req_v2.docx, and there are no imported references for this document.
Navigation from Simulink block in the presense of Requirements Editor brings you directly to the
external Word document.

To avoid this inconsistency we need to update the previously imported references for assotiation with
the updated document name. We use the ReqSet.updateSrcFileLocation() API to accomplish
this task. Additionally, because the updated document may have modified Requirements, we must use
importNode.updateFromDocumet() API to pull-in the updates for reference items stored on
Simulink Requirements sidde. After this is done, navigating from Simulink model will locate the
correct matching imported reference.

 Use Command-line API to Update or Repair Requirements Links

2-27

reqSet = slreq.find('type', 'ReqSet', 'Name', 'crs_req'); % ReqSet with imported References
reqSet.updateSrcFileLocation('crs_req.docx', 'crs_req_v2.docx');
importNode = reqSet.find('CustomId', 'crs_req_v2'); % top-level Import node
importNode.updateFromDocument();
rmidotnet.MSWord.application('kill'); % close Word application
rmi('view', 'crs_plant/status', 1); % navigate to highlight the updated reference in Requiremets Editor

Cleanup After USE CASE 1

slreq.clear(); % discard link data changes to avoid prompts on Project close
prj = simulinkproject(); prj.close(); % close the Simulink Project (also cleans-up MATLAB path changes)
rmidotnet.MSWord.application('kill'); % close MS Word application

USE CASE 2: Batch-update Links to Fully Rely on Imported References

As demonstrated in USE CASE 1 above, additional efforts are required to maintain "direct links" to
external documents when documents are moved or renamed. A better workflow is to convert the
existing "direct links" into "reference links", which are links that point to the imported References
in *.slreqx files and no longer duplicate information about the location or name of the original
document. When using this option, the external source document assocation is stored only in the
Requirement Set that hosts the imported References. To demonstrate this workflow we restart from
the same initial point by reopening the Cruise Control Project example in a new subfolder. We then
use linkSet.redirectLinksToImportedReqs(reqSet) API to update all the direct links in
crs_plant.slmx. After updating the LinkSet in this way, we loop over all the links to confirm the
absence of "direct" links to crs_req.docx file.

slreqCCProjectStart();
copyfile(fullfile(pwd, 'documents/crs_req.docx'), fullfile(pwd, 'documents/crs_req_v2.docx'));
open_system('crs_plant'); % open the Simulink model

2 Requirements Traceability and Consistency

2-28

linkSet = slreq.find('type', 'LinkSet', 'Name', 'crs_plant'); % LinkSet for crs_plant.slx
reqSet = slreq.find('type', 'ReqSet', 'Name', 'crs_req'); % ReqSet with imported References
linkSet.redirectLinksToImportedReqs(reqSet); % Convert all direct links to reference links
links = linkSet.getLinks();
disp('Check for links to original external document:');
counter = 0;
for i = 1:numel(links)
 linkTarget = links(i).getReferenceInfo();
 if contains(linkTarget.artifact, 'crs_req.docx')
 source = links(i).source;
 warning(['link from ' source.id ' still points to crs_req.docx']); % should not happen
 counter = counter + 1;
 end
end
disp([' Total ' num2str(counter) ' links to external document']); % should be 0 direct links
rmi('view', 'crs_plant/status', 1); % navigate from Simulink model to updated Reference

Check for links to original external document:
 Total 0 links to external document

Links to References and External Document Rename

Now, when all links point to imported References and not to the external document, traceability data
remains consistent after document rename, as long as the Import node is updated for the new
external document name. As in the USE CASE 1, we will pretend there is an updated version of the
external requirements document, by resaving our Word document with a new name. We then perform
the required update for the Import node by using the same APIs as before. Now, because the links
rely on imported References, and do not store information about imported document, navigation from
Simulink model brings us to the correctly updated reference, same as after performing all the steps
of USE CASE 1.

 Use Command-line API to Update or Repair Requirements Links

2-29

The Reference is now associated with the updated external document, [Show in document] button
opens the updated (renamed) document, and no further adjustment on the LinkSet side is required.

reqSet = slreq.find('type', 'ReqSet', 'Name', 'crs_req'); % ReqSet with imported References
reqSet.updateSrcFileLocation('crs_req.docx', 'crs_req_v2.docx');
importNode = reqSet.find('CustomId', 'crs_req_v2'); % top-level Import node
importNode.updateFromDocument();
rmi('view', 'crs_plant/status', 1); % navigates to a Reference in updated Requirement Set

Cleanup After USE CASE 2

slreq.clear(); % discard link data changes to avoid prompts on Project close
prj = simulinkproject(); prj.close(); % close the Simulink Project (also cleans-up MATLAB path changes)
rmidotnet.MSWord.application('kill'); % close MS Word application

USE CASE 3: Moving Linked Artifacts to a New Project

Now suppose that we are branching an exisiting project with linked artifacts, and we need to create a
new set of renamed aftifacts with all the traceability links as in the original Project. As before, we will
extract the Cruise Control Project into a new subfolder, and convert the "direct links" to "reference
links", as we have done in USE CASE 2 above. We then go ahead and create "new versions" of the
linked artifacts by resaving each one with the _v2. name.

After creating renamed copies of Simulink model, the imported external document, and the
Requirement Set with the imported Requirements, there is one problem: renamed model is linked to
the references in the original Requirement set, not in the renamed Requirement set.

2 Requirements Traceability and Consistency

2-30

slreqCCProjectStart();
open_system('models/crs_plant.slx');
linkSet = slreq.find('type', 'LinkSet', 'Name', 'crs_plant'); % LinkSet for crs_plant.slx
reqSet = slreq.find('type', 'ReqSet', 'Name', 'crs_req'); % ReqSet with imported References
linkSet.redirectLinksToImportedReqs(reqSet); % Convert all direct links to reference links
mkdir(fullfile(pwd, 'copied'));
save_system('crs_plant', fullfile(pwd, 'copied/crs_plant_v2.slx')); % this also creates crs_plant_v2.slmx LinkSet file
reqSet.save(fullfile(pwd, 'copied/crs_req_v2.slreqx')); % new ReqSet copy to use with crs_plant_v2.slx
copyfile('documents/crs_req.docx', 'copied/crs_req_v2.docx'); % new document copy to use with crs_req_v2.slreqx
reqSet.updateSrcFileLocation('crs_req.docx', fullfile(pwd, 'copied/crs_req_v2.docx')); % associate renamed ReqSet with renamed Document
importNode = reqSet.find('CustomId', 'crs_req_v2'); % top-level Import node
importNode.updateFromDocument(); % ensure contents in renamed ReqSet match the contents in renamed Document
rmi('view', 'crs_plant_v2/status', 1); % navigation from renamed Simulink model: the old item in the original ReqSet is highlighted <- WRONG

 Use Command-line API to Update or Repair Requirements Links

2-31

Update Links in Renamed Source to Use the Renamed Destination as the Target

Similarly to USE CASE 1, we can use LinkSet.updateDocUri(OLD, NEW) API to update links in
crs_plant_v2.slmx to use the renamed Requirement Set crs_req_v2.slreqx as the link target,
instead of the original crs_req.slreqx. Once this is done, navigate again from the block in the
renamed model. The correct requirement in the renamed Requirement Set is selected, and the links
in the Links pane at bottom-right are resolved.

linkSet = slreq.find('type', 'LinkSet', 'Name', 'crs_plant_v2'); % LinkSet for crs_plant_v2.slx (new copy)
linkSet.updateDocUri('crs_req.slreqx', 'crs_req_v2.slreqx'); % crs_plant_v2.slx should link with crs_req_v2.slreqx
rmi('view', 'crs_plant_v2/status', 1); % navigation from renamed Simulink model: correct item in renamed ReqSet is highlighted

Cleanup After USE CASE 3

slreq.clear(); % discard link data changes to avoid prompts on Project close
close_system('crs_plant_v2'); % this Model is not in Project, hence need to close separately

2 Requirements Traceability and Consistency

2-32

prj = simulinkproject(); prj.close(); % close the Simulink Project (also cleans-up MATLAB path changes)
rmidotnet.MSWord.application('kill'); % close MS Word application

 Use Command-line API to Update or Repair Requirements Links

2-33

Requirements-Based Verification

• “Review Requirement Implementation Status Metrics Data” on page 3-2
• “Summarize Requirements Verification Status” on page 3-3
• “Justify Requirements” on page 3-6
• “Linking to a Test Script” on page 3-8
• “Include Results from External Sources in Verification Status” on page 3-16
• “Linking to a Result File” on page 3-19
• “Validate Requirements by Analyzing Model Properties” on page 3-26
• “Integrating results from a custom authored MATLAB script as a test” on page 3-33
• “Integrating Results from an External Result file” on page 3-37
• “Integrating results from a custom authored MUnit script as a test” on page 3-41

3

Review Requirement Implementation Status Metrics Data
Simulink Requirements provides you with Implementation Status summaries for your requirement
sets. You can use these status summaries to identify gaps in requirement implementation in your
design. Requirements that have the link type set to Implemented by contribute to the
Implementation Status summary metric.

The Implementation Status metrics for a requirement set are cumulatively aggregated over all the
requirements in the set. Each child requirement belonging to a parent requirement must be
implemented for the parent requirement to be considered as implemented.

You can view the Implementation Status metric for your requirement sets from both the
Requirements Editor and the Requirements Browser in the Requirements Perspective View. To toggle
the metric display, select Display > Implementation Status from the Requirements Editor menu.
Hover your mouse over the Implemented column in the Requirements Editor or Requirements
Browser for each requirement or requirement set to view the Implementation Status metric
associated with it.

See Also
“Summarize Requirements Verification Status” on page 3-3 | “Justify Requirements” on page 3-6

3 Requirements-Based Verification

3-2

Summarize Requirements Verification Status
In this section...
“Display Verification Status” on page 3-3
“Update Verification Status by Running Tests or Analyses” on page 3-4
“Include Verification Status in Report” on page 3-5

You can view the verification status of your requirements in the Requirements Browser and
Requirements Editor. Verification status reflects results from simulation testing using Simulink Test
or property proving using Simulink Design Verifier™. Use Verified by links from requirements to
simulation assessments or proof objectives.

• Simulation testing: Verification status reflects the result of Simulink Test test files, test suites,
and test cases linked to requirements. Pass, fail, or untested results derive from test assessments,
including:

• Model Verification library blocks in the system under test.
• verify (Simulink Test) statements.
• Baseline or equivalence data comparison.

Run tests from the Test Manager, or using sltest.testmanager.run. For a brief tutorial on
creating and running a test case, follow the first part of “Create and Run a Baseline Test”
(Simulink Test).

• Property proving: Verification status reflects the analysis result of properties modeled using:

• Simulink Design Verifier Proof Objective blocks.
• Model Verification blocks.

Link blocks to requirements, then analyze the properties.

For more information, see “Requirement Links” on page 2-11.

Display Verification Status
Verification status is summarized in the Verified column of the Requirements Browser and
Requirements Editor. To display the column,

• In the Requirements Editor, select Display > Verification Status, or
• In the Requirements Browser pane of the model window, right click a requirement and select
Verification Status.

For example, the Verified column shows partial verification links for this requirement set, with one
failed result:

 Summarize Requirements Verification Status

3-3

The fullness of the bar indicates how many requirements in a group (parent + children) are linked to
verification items. Color indicates the test or analysis results:

• Passed (green): The linked test(s) passed, or the analysis proved the objective(s).
• Failed (red): The linked test(s) failed, or the analysis falsified the objective(s).
• Justified (green): The requirement is excluded from the summary with a justification. For more

information, see “Justify Requirements” on page 3-6.
• Unexecuted: (yellow):

• The linked test(s) have not run, or the linked objective(s) have not executed, or
• A linked test or objective has been updated more recently than the most recent result.

• None (colorless): The requirement does not have Verified by link(s).

Update Verification Status by Running Tests or Analyses
You can update verification status by running tests or analyses linked to your requirements:

1 In the Requirements Editor, right click the requirement and select Run Tests.
2 In the Run Tests dialog box, select the tests.
3 Click Run Tests.

You can also update verification status by running tests or analysis outside of the Requirements
Editor:

• In Simulink Test, run the tests in the Test Manager.
• In Simulink Design Verifier, run property proving analysis.
• In Simulink, run the model that contains the Model Verification blocks.

3 Requirements-Based Verification

3-4

Note If you have linked requirements to Simulink Design Verifier Proof Objective blocks in multiple
models, the Run Tests dialog box runs a Simulink Design Verifier analysis when the corresponding
models are open.

Include Verification Status in Report
You can include verification status in your requirements report:

1 In the Requirements Editor menu, select Report > Generate Report.
2 Select Verification Status.
3 Click Generate Report.

For more information, see “Report Requirements Information” on page 4-8

See Also
“Review Requirement Implementation Status Metrics Data” on page 3-2 | “Link to Test Cases from
Requirements”

 Summarize Requirements Verification Status

3-5

Justify Requirements
Use requirement justification to exclude requirements from the Implementation and Verification
Status metrics calculation for your requirement sets. You may have non-functional requirements in
your model design specification that cannot be implemented in your design. You may also have
requirements that require manual testing, instead of linking to test cases or verification subsystems.
You can justify these requirements to override their Implementation and Verification statuses and
iterate more effectively on your model design.

A justification is an object associated with a requirement. All justification objects in a requirement set
are grouped under a single top-level justification object as its children. Any requirement can be
justified for implementation, verification, or both. Justified requirements do not contribute to the
overall aggregation of Implementation and Verification Status metrics and appear light blue in the
Implemented and Verified columns of the Requirements Editor.

There are two workflows for justifying requirements in Simulink Requirements. You can either create
a justification object and link requirements to it or use an existing justification object and link
requirements to it.

1
Create a justification object by clicking the icon in the Requirements Editor or
Requirements Browser toolbar.

2 Right-click the requirement you want to link with the justification object and select Justification
> Link with new Justification for implementation or Link with new Justification for
verification.

To justify a parent requirement and all its child requirements, select the Hierarchical Justification
option in the Property Inspector.

3 Requirements-Based Verification

3-6

Note You cannot link justification objects to objects that are not requirements.

 Justify Requirements

3-7

Linking to a Test Script
In this example, you link a requirement to a MATLAB script using the “Outgoing Links Editor” on
page 10-6 and the API. The verification status in the Requirements Editor reflects the test results.
These examples follow the workflow for including external test results in the requirement verification
summary. For more information, see “Include Results from External Sources in Verification Status” on
page 3-16.

Linking to a Test Script Using the Outgoing Links Editor
Create a requirement set called counter_req.slreqx in the Requirements Editor and save it in a
writable location. This requirement set has child requirements that have requirement IDs and
descriptions. For more details on how to create requirement sets, see “Work with Requirements in
the Simulink Editor”.

You have a MATLAB script called runmytests.m that runs a test for the Counter class in
Counter.m. The test script contains custom methods that write results a TAP format to a file named
results.tap. Assume that you have run the test and it has produced the results.tap file that
contains the results of the test. You want to link the results of the test to a requirement in
counter_req.slreqx. Follow these steps to create and view the verification status with a test case
called counterStartsAtZero in runmytests.m script:

• “Create the Register the Link Type” on page 3-8
• “Create the Link” on page 3-9
• “View the Verification Status” on page 3-10

Create the Register the Link Type

Open the template file at matlabroot/toolbox/slrequirements/linktype_examples/
linktype_TEMPLATE.m. Follow these steps:

1 Create a new MATLAB file.
2 Copy the contents of linktype_TEMPLATE into the new file. Save the file as

linktype_mymscripttap.m.
3 In linktype_mymscripttap.m

a Replace the function name linktype_TEMPLATE with linktype_mymscripttap.m.
b Set linkType.Label as 'MScript TAP Results'.

3 Requirements-Based Verification

3-8

c Set linkType.Extensions as {'.M'}.
d Uncomment the command for GetResultFcn in order to use it in

linktype_mymscripttap and enter:

 linktype.GetResultFcn = @GetResultFcn;

 function result = GetResultFcn(link)
 testID = link.destination.id;
 testFile = link.destination.artifact;
 resultFile = getResultFile(testFile);

 if ~isempty(resultFile) && isfile(resultFile)
 tapService = slreq.verification.services.TAP();
 result = tapService.getResult(testID, resultFile);
 else
 result.status = slreq.verification.Status.Unknown;
 end

 end

 function resultfile = getResultFile(testFile)
 resultMap = ["runmytests.m", "results.tap";...
 "othertests.m", "results2.tap"];
 resultfile = resultMap(resultMap(:,1) == testFile,2);
 end

GetResultFcn uses the utility slreq.verification.services.TAP to interpret the
result files for verification. See slreq.verification.services.TAP for more details. For
more information about GetResultFcn, see “Links and Link Types” on page 10-2.

4 Save linktype_mymscripttap.m.
5 Register the link type. At the command line, enter:

rmi register linktype_mymscripttap

Note If the command returns a warning, then you must unregister the file and follow step 5
again. Unregister the file by entering:

rmi unregister linktype_mymscripttap

Create the Link

Follow these steps to add the link manually in the Outgoing Links Editor:

1 Open the Requirements Editor and, in the counter_req.slreqx requirements set, right-click
on the child requirement 1.1 and select Open Outgoing Links Editor.

2 In the Outgoing Links Editor dialog box, in the Requirements tab, click New.
3 Enter these details to establish the link:

• Description: runmytestscounterStartsAtZero
• Document Type: MScript TAP Results
• Document: runmytests.m
• Location: counterStartsAtZero

 Linking to a Test Script

3-9

4 Click OK. The link is highlighted in the Links section of the Requirements Editor.

View the Verification Status

Update the verification status in the Requirements Editor. Click on Refresh to see the
verification status for the requirements in the Requirements Editor. This shows the verification status
for entire requirement set that passed or failed.

3 Requirements-Based Verification

3-10

The requirements for counterStartsAtZero are fully verified. Here, the verification status shows
that out of three tests, one test passed.

Linking to a Test Script Using the API
Create a requirement set called counter_req.slreqx in the Requirements Editor and save it in a
writable location. This requirement set has child requirements that have requirement IDs and
descriptions. For more details on how to create requirement sets, see “Work with Requirements in
the Simulink Editor”.

 Linking to a Test Script

3-11

You have a MATLAB script called runmytests.m that runs a test for Counter class in Counter.m.
The test script contains custom methods that write results in a TAP format to a file named
results.tap. Assume that you have run the test and it has produced the results.tap file that
contains the results of the test. You want to link the results of the test to a requirement in
counter_req.slreqx. Follow these steps to create and view the verification status with a test case
called counterStartsAtZero in runmytests.m script:

• “Create and Register the Link Type” on page 3-12
• “Create the Link” on page 3-13
• “View the Verification Status” on page 3-13

Create and Register the Link Type

Open the template file at matlabroot/toolbox/slrequirements/linktype_examples/
linktype_TEMPLATE.m. Follow these steps:

1 Create a new MATLAB file.
2 Copy the contents of linktype_TEMPLATE into the new file. Save the file as

linktype_mymscripttap.m.
3 In linktype_mymscripttap.m:

a Replace the function name linktype_TEMPLATE with linktype_mymscripttap.m.
b Set linkType.Label as 'MScript TAP Results'.
c Set linkType.Extensions as {'.M'}.
d Uncomment the command for GetResultFcn in order to use it in

linktype_mymscripttap and enter:

 linktype.GetResultFcn = @GetResultFcn;

 function result = GetResultFcn(link)
 testID = link.destination.id;
 testFile = link.destination.artifact;
 resultFile = getResultFile(testFile);

 if ~isempty(resultFile) && isfile(resultFile)
 tapService = slreq.verification.services.TAP();
 result = tapService.getResult(testID, resultFile);
 else
 result.status = slreq.verification.Status.Unknown;
 end

3 Requirements-Based Verification

3-12

 end

 function resultfile = getResultFile(testFile)
 resultMap = ["runmytests.m", "results.tap";...
 "othertests.m", "results2.tap"];
 resultfile = resultMap(resultMap(:,1) == testFile,2);
 end

GetResultFcn uses the utility slreq.verification.services.TAP to interpret the
result files for verification. See slreq.verification.services.TAP for more details. For
more information about GetResultFcn, see “Links and Link Types” on page 10-2.

4 Save linktype_mymscripttap.m.
5 Register the link type. At the command line, enter:

rmi register linktype_mymscripttap

Note If the command returns a warning, then you must unregister the file and follow step 5
again. Unregister the file by entering:

rmi unregister linktype_mymscripttap

Create the Link

Follow these steps to create the link:

1 From the MATLAB command prompt, enter:

externalSource.id = 'counterStartsAtZero';
externalSource.artifact = 'runmytests.m';
externalSource.domain = 'linktype_mymscripttap';

2 Find the requirement related to the link by typing:

requirement = reqSet.find('Type', 'Requirement', 'SID', 2);
3 Create the link by entering:

link = slreq.createLink(requirement, externalSource);

This creates the link as test case counterStartsAtZero for the requirement SID. In
Requirements Editor, the link appears in the Links > Confirmed By section.

View the Verification Status

Update the verification status. At the MATLAB command prompt, type:

 Linking to a Test Script

3-13

reqSet.updateVerificationStatus

Fetch the verification status for the requirement by entering :

status = reqSet.getVerificationStatus

This shows which of the requirements in the requirements set have passed or fail. Click on Refresh

 button to see the verification status for the requirements in the Requirements Editor.

The requirements for counterStartsAtZero are fully verified. Here, the verification status shows
that out of three tests, one test passed.

Integrating Results from a MATLAB Unit Test Case
You can also integrate the results from a MATLAB Unit Test case by linking to a test script. The test is
run with a customized test runner using a XML plugin that produces a JUnit output. The XMLPlugin
class creates a plugin that writes test results to an XML file. For more information, see
matlab.unittest.plugins.XMLPlugin.producingJUnitFormat.

You can register the domain and create the links in the same way as with the test script. The
verification status for a set of requirements is shown in the Simulink Requirements Editor.

3 Requirements-Based Verification

3-14

See Also
“Include Results from External Sources in Verification Status” on page 3-16

 Linking to a Test Script

3-15

Include Results from External Sources in Verification Status
Simulink Requirements allows you to include the verification status of results from external sources
in the Simulink Requirements™ Editor. You can summarize requirements verification status, author
your custom domain registration, and write custom logic to fetch the results. For more information,
see “Summarize Requirements Verification Status” on page 3-3.

You can also include test results from:

• Continuous integration (CI) servers such as Jenkins
• Custom results updated manually or with test scripts

You can use built-in verification services to interpret result files for most common cases, such as JUnit
and TAP (Test Anything Protocol), to include external test results in the requirements verification
status. You can also create custom link type registrations that interpret test results from the external
environment into language specific to your development environment. See, “Custom Link Types” on
page 10-8.

When you include the verification status of external test results in your requirements:

• The external results are listed in the Verified column of the Requirements Editor, along with
results from other sources, such as Model Verification blocks and Simulink Test test files.

• Pass/fail indication is reflected in requirement links.
• Result status is automatically aggregated across requirement hierarchies.
• Result status automatically updates as requirements are added or removed.

How to Populate Verification Results from External Sources
Commonly, external test results are run and managed outside of the MATLAB environment. Test
results can be the product of:

• Running test scripts or other programs that generate a result file
• Running a MATLAB Unit Test test case with a custom TestRunner object, with or without a CI

server

You can create links to the test results by either:

• Linking directly to a result file. The external result artifact is used as the link destination and the
requirements are used as the links source. To create custom link type, you must know:

1 The file location
2 The file format (for example, JUnit or Excel)

For details, see “Linking to a Result File” on page 3-19.
• Linking to a test script and providing code that fetches results based on that test location. The

external test artifacts are used as the link destination and the requirements are used as the link
source. Your custom logic in the GetResultFcn function should locate the result artifact that
corresponds to the test artifact and fetch results from that result artifact. See “Linking to a Test
Script” on page 3-8.

The following steps are used to create the links from external sources and populate verification
statuses from them:

3 Requirements-Based Verification

3-16

1 Create a custom link type: In the Requirements Management Interface (RMI), create a custom
link type for your test result file:

a Write a MATLAB function that implements the custom link type. The GetResultFcn is
implemented in the custom link type. For more information, see “Links and Link Types” on
page 10-2.

b Save the function on the MATLAB path.

For details, see “Custom Link Type Registration” on page 10-14.
2 Register the custom link type: See “Custom Link Type Registration” on page 10-14. After

registration, the link type is available in the Outgoing Links Editor in the Document type menu.
3 Link from the requirement to the test result file or test script: Use the Outgoing Links

Editor or slreq.createLink to link from the requirements to the results file.
4 Display the verification status: In the Requirements Editor, view the Verified column to view

the verification status. For details, see “Summarize Requirements Verification Status” on page 3-
3.

5 Refresh the requirements view: After the tests run, refresh the verification status by clicking

the Refresh button.

 Include Results from External Sources in Verification Status

3-17

You can include the verification status from external sources in your requirements report by clicking
Report > Generate Report from the Requirements Editor.

When populating verification results from external sources:

• Test the GetResultFcn code before integrating the code with rmi register. For more
information about GetResultFcn, see “Links and Link Types” on page 10-2.

• Confirm the custom link type registration in the Outgoing Links Editor.
• Use caching to improve the performance for cases where a single file contains a result for many

links.
•

Insert break points into the GetResultFcn code and use the Refresh button to re-execute
it.

• When using Projects, register and unregister the custom link type when using in project startup or
shutdown scripts.

See Also
“Linking to a Test Script” on page 3-8 | “Linking to a Result File” on page 3-19

Related Examples
• “Integrating results from a custom authored MATLAB script as a test” on page 3-33
• “Integrating Results from an External Result file” on page 3-37
• “Integrating results from a custom authored MUnit script as a test” on page 3-41

3 Requirements-Based Verification

3-18

Linking to a Result File
In this example, you link a requirement to a test result file that is in Excel format using the “Outgoing
Links Editor” on page 10-6 and the API. The verification status in the Simulink Requirements
Editor reflects the test results. These examples follow the workflow for including external test results
in the requirement verification summary. For more information, see “Include Results from External
Sources in Verification Status” on page 3-16.

Linking to a Result File Using the Outgoing Links Editor
Create a requirement set called counter_req.slreqx in the Requirements Editor and save it in a
writable location. This requirement set has child requirements that have requirement IDs and
descriptions. For more details on how to create requirement sets, see “Work with Requirements in
the Simulink Editor”.

The external results file is an Excel file called results.xlsx. The verification status in Simulink
Requirements updates based on the values of the cells in the Excel sheet. A unique ID in the Test
column identifies each result in the Status column. The Test and Status labels are contained in a
header row.

Suppose you want to update the verification information for the counterSetsValue test case based
on the Excel status log. Follow these steps to create and verify links to the result file:

 Linking to a Result File

3-19

• “Create and Register the Link Type” on page 3-20
• “Create the Link” on page 3-21
• “View the Verification Status” on page 3-21

Create and Register the Link Type

Open the template file at matlabroot/toolbox/slrequirements/linktype_examples/
linktype_TEMPLATE.m. Follow these steps:

1 Create a new MATLAB file.
2 Copy the contents of linktype_TEMPLATE into the new file. Save the file as

linktype_myexcelresults.m.
3 In linktype_myexcelresults.m:

a Replace the function name linktype_TEMPLATE with linktype_myexcelresults.
b Set linkType.Label as 'Excel Results'.
c Set linkType.Extensions as {'.xlsx'}.
d Uncomment the command for GetResultFcn in order to use it in

linktype_myexcelresults and enter:

linktype.GetResultFcn = @GetResultFcn;
......
function result = GetResultFcn(link)
 testID = link.destination.id;
 resultFile = link.destination.artifact;

 if ~isempty(resultFile) && isfile(resultFile)
 resultTable = readtable(resultFile);
 testRow = strcmp(resultTable.Test,testID);
 status = resultTable.Status(testRow);

 if status{1} == "passed"
 result.status = slreq.verification.Status.Pass;
 elseif status{1} == "failed"
 result.status = slreq.verification.Status.Fail;
 else
 result.status = slreq.verification.Status.Unknown;
 end
 else
 result.status = slreq.verification.Status.Unknown;
 end
end

For more information about GetResultFcn, see “Links and Link Types” on page 10-2.
4 Save linktype_myexcelresults.m.
5 Register the link type. At the command line, enter:

rmi register linktype_myexcelresults

Note If the command returns a warning, then you must unregister the file and follow step 5
again. Unregister the file by entering:

rmi unregister linktype_myexcelresults

3 Requirements-Based Verification

3-20

Create the Link

Follow these steps to add the link manually in the Outgoing Links Editor:

1 Open the Requirements Editor and, in the counter_req.slreqx requirement set, right-click on
the child requirement 1.3 and select Open Outgoing Links Editor.

2 In the Outgoing Links Editor dialog box, in the Requirements tab, click New.
3 Enter these details to establish the link:

• Description: resultcounterSetsValue
• Document Type: Excel Results
• Document: results.xlsx
• Location: counterSetsValue

4 Click OK. The link is highlighted in the Links section of the Requirements Editor.

View the Verification Status

Update the verification status in the Requirements Editor. Click Refresh button to see the
verification status for the requirements in the Requirements Editor. This shows the verification status
for entire requirement set that passed or failed.

 Linking to a Result File

3-21

The requirements for counterSetsValue are fully verified. Here, the verification status shows that
out of three tests, one test passed.

Linking to a Result File Using the API
Create a requirement set called counter_req.slreqx in the Requirements Editor and save it in a
writable location. This requirement set has child requirements that have requirement IDs and
descriptions. For more details on how to create requirement sets, see “Work with Requirements in
the Simulink Editor”.

3 Requirements-Based Verification

3-22

The external results file is an Excel file called results.xlsx. The verification status in Simulink
Requirements updates based on the values of the cells in the Excel sheet. A unique ID in the Test
column identifies each result in the Status column. The Test and Status labels are contained in a
header row.

Suppose you want to update the verification information for the counterSetsValue test case based
on the Excel status log. Follow these steps to create and verify links to the result file:

• “Create and Register the Link Type” on page 3-23
• “Create the Link” on page 3-24
• “View the Verification Status” on page 3-25

Create and Register the Link Type

Open the template file at matlabroot/toolbox/slrequirements/linktype_examples/
linktype_TEMPLATE.m. Follow these steps:

1 Create a new MATLAB file.
2 Copy the contents of linktype_TEMPLATE into the new file. Save the file as

linktype_myexcelresults.m.
3 In linktype_myexcelresults.m:

a Replace the function name linktype_TEMPLATE with linktype_myexcelresults.
b Set linkType.Label as 'Excel Results'.
c Set linkType.Extensions as {'.xlsx'}.
d Uncomment the command for GetResultFcn in order to use it in

linktype_myexcelresults and enter:

linktype.GetResultFcn = @GetResultFcn;
......
function result = GetResultFcn(link)
 testID = link.destination.id;
 resultFile = link.destination.artifact;

 if ~isempty(resultFile) && isfile(resultFile)
 resultTable = readtable(resultFile);

 Linking to a Result File

3-23

 testRow = strcmp(resultTable.Test,testID);
 status = resultTable.Status(testRow);

 if status{1} == "passed"
 result.status = slreq.verification.Status.Pass;
 elseif status{1} == "failed"
 result.status = slreq.verification.Status.Fail;
 else
 result.status = slreq.verification.Status.Unknown;
 end
 else
 result.status = slreq.verification.Status.Unknown;
 end
end

For more information about GetResultFcn, see “Links and Link Types” on page 10-2.
4 Save linktype_myexcelresults.m.
5 Register the link type. At the command line, enter:

rmi register linktype_myexcelresults

Note If the command returns a warning, then you must unregister the file and follow step 5
again. Unregister the file by entering:

rmi unregister linktype_myexcelresults

Create the Link

Follow these steps to create the link:

1 From the MATLAB command prompt, enter:

externalSource.id = 'counterSetsValue';
externalSource.artifact = 'results.xlsx';
externalSource.domain = 'linktype_myexcelresults';

2 Find the requirement related to the link by typing:

requirement = reqSet.find('Type', 'Requirement', 'SID', 4);
3 Create the link by entering:

link = slreq.createLink(requirement, externalSource);

This creates the link as test case counterSetsValue for the requirement SID. In Requirements
Editor, the link appears in the Links > Confirmed By section.

3 Requirements-Based Verification

3-24

View the Verification Status

Update the verification status for the requirement set. At the MATLAB command prompt, type:

reqSet.updateVerificationStatus

Fetch the verification status for the requirement by entering:

status = reqSet.getVerificationStatus

This shows the verification status for entire requirement set that passed or failed. Click on Refresh

 to see the verification status for the requirements in the Requirements Editor.

The requirements for counterSetsValue are fully verified. Here, the verification status shows that
out of three tests, one test passed.

See Also
“Include Results from External Sources in Verification Status” on page 3-16

 Linking to a Result File

3-25

Validate Requirements by Analyzing Model Properties
Help validate a set of requirements by analyzing properties that model individual requirements.
Falsified properties indicate incompleteness in the requirements set.

Overview

In this example, you analyze verification logic modeled on four safety requirements of an engine
thrust reverser system. Falsified results from the safety requirements analysis suggest that the
system design requirements are incomplete. That is, the system allows behavior that violates the
safety requirements:

1 Thrust reverser shall not deploy if the airspeed is greater than 150 knots.
2 Thrust reverser shall not deploy if the aircraft is in the air, as indicated by the value of the weight

on wheels sensors. If the aircraft is in the air, the signal value for each of two weight on wheels
(WOW) sensors is false.

3 Thrust reverser shall not deploy if the value of either thrust sensor is positive.
4 Thrust reverser shall not deploy if the rotational speed of the landing gear wheels is less than a

threshold value.

Further analysis shows that the system lacks necessary control logic. A revised control system passes
analaysis of the properties modeled on the safety requirements.

Analyze the Safety Properties

1. Open the reqs_validation_property_proving_original_model model from the matlab/
examples/slrequirements folder.

3 Requirements-Based Verification

3-26

The Safety Properties subsystem is a Verification Subsystem block from the Simulink® Design
Verifier™ library. The verification logic in Safety Properties models the safety requirements. For
example, the airspeed requirement is verified by:

For more information about Verification Subsystem blocks, see Verification Subsystem.

2. View the requirements. In the model, click the icon at the lower right and select the
Requirements tile. The Requirements Browser appears below the model. Expand
thrust_reverser_safety_requirements.

The safety requirements link to the Assertion blocks in the Safety Properties subsystem, and the
Assertion blocks are considered proof objectives. The verification status for each requirement reflects
the property analysis results of its corresponding Assertion block.

 Validate Requirements by Analyzing Model Properties

3-27

3. Display the verification status for the requirements. Right-click one of the requirements in the
browser and select Verification Status. The Verified column appears and shows Unexecuted status
for the requirements.

4. Analyze the model properties. Navigate to a writable folder. In the Design Verifier toolstrip, click
the Prove Properties button.

Checking compatibility for property proving: model 'reqs_validation_property_proving_original_model'
Compiling model...done
Building model representation...done

'reqs_validation_property_proving_original_model' is compatible for property proving with Simulink Design Verifier.

Proving properties using model representation from 29-Feb-2020 11:18:43...
....

Completed normally.

Generating output files:

Results generation completed.

 Data file:
 C:\TEMP\Bdoc20a_1326390_10420\ibC22023\2\tp852d6cf0\ex56983666\sldv_output\reqs_validation_property_proving_original_model\reqs_validation_property_proving_original_model_sldvdata.mat

When the property analysis completes, click the Refresh button to update the status in the Verified
column. The results show that 3 out of 4 objectives are falsified. For 3 of the 4 objectives, analysis
found a signal condition which violates the properties, and therefore the safety requirements.

For example, for the airpseed requirement, the analysis finds a condition in which the thrust reverser
can deploy when the average airspeed is greater than 150 knots.

3 Requirements-Based Verification

3-28

The falsified result suggests that the control system algorithm is inadequately designed to avoid a
condition in which the thrust reverser can deploy at speed.

Next, investigate the design model by analyzing the dependencies of the property analysis.

Analyze the Redesigned System

The redesigned system requires an intermediate deployment mode which delays the deployment of
the thrust reverser. Open the reqs_validation_property_proving_redesigned_model model.
Open the thrustReversers chart.

 Validate Requirements by Analyzing Model Properties

3-29

3 Requirements-Based Verification

3-30

The additional design requirement states that the thrust reverser shall deploy after a 5 second pause.
The aboutToBeDeployed state implements the requirement.

 Validate Requirements by Analyzing Model Properties

3-31

Before running a property proving analysis on the redesigned model,create links to the safety
properties that belong to the redesigned model. Delete the requirement links from
thrust_reverser_safety_requirements.slreqx that link to the safety properties in the
original model and recreate them for the redesigned model.

Run the property proving analysis by double-clicking the Run button. View the results in the
Requirements Editor.

The results show that all the properties are valid.

3 Requirements-Based Verification

3-32

Integrating results from a custom authored MATLAB script as a
test

In this example, you link a requirement to a MATLAB script. The verification status in the Simulink
Requirements Editor reflects the test results.

Workflow

You have a MATLAB script called runmytests.m which runs a test for Counter class in Counter.m.
The test script contains custom methods that write results in a TAP format to a file named
results.tap. Assume that you have run the test and it has produced the results.tap file that
contains the results of the test. You want to link the results of the test to a requirement in
counter_req.slreqx. Follow these steps to create and view the verification status with a test case
called counterStartsAtZero in runmytests.m script:

1 You start with opening the Requirements set counter_req.slreqx'.
2 You create and register the Linktype using the API.
3 You create the link.
4 You view the Verification Status.

Section 1 : Open the Requirements Set

Open the requirements file counter_req.slreqx in the Requirements Editor.

reqSet = slreq.open('counter_req.slreqx');

This will open the requirements set 'counter_req.slreqx'.

Section 2 : Create and Register Custom Linktype

The domain registration needed for this example is written in 'linktype_mymscripttap.m'. The
template file for domain registrations is available at: matlabroot/toolbox/slrequirements/
linktype_examples/linktype_TEMPLATE.m. Take a look at the implementation of GetResultFcn in
the domain registration file:

edit linktype_mymscripttap;

Register the custom linktype:

 Integrating results from a custom authored MATLAB script as a test

3-33

rmi register linktype_mymscripttap;

If the command returns any warning, then you must unregister the file and follow the command
again. Unregister the file by entering: rmi unregister linktype_mymscripttap

Section 3: Create the Link

Make the struct containing properties of the external test. Follow these steps to create the link:

externalSource.id = 'counterStartsAtZero';
externalSource.artifact = 'runmytests.m';
externalSource.domain = 'linktype_mymscripttap';

Find the requirement related to the link by typing:

requirement = reqSet.find('Type', 'Requirement', 'SID', 2);

Create the link by entering:

link = slreq.createLink(requirement, externalSource);

This creates the link as test case counterStartsAtZero to the requirement 'SID'. In Requirements
Editor, the link appears in the Links Confirmed by section.

Section 4: View the Verification Status

To update the verification status for the requirements set, type:

reqSet.updateVerificationStatus;

Fetch the verification status for the requirement:

status = reqSet.getVerificationStatus;

The Requirements Editor shows the verification status for entire requirements set that are passes or
failed.

3 Requirements-Based Verification

3-34

The verification status for the requirements for the counterStartsAtZero is fully verified. The
Requirements Editor shows the overall verfication statuses for all the other requirements links
associated with counter_req.slreqx.

reqSet = slreq.open('counter_req.slreqx');

Click on the Refresh button if you are unable to see the verification status for the requirements in
the Requirements Editor. The verification status shows that out of three tests, one test passed.

 Integrating results from a custom authored MATLAB script as a test

3-35

Clear the requirements once the simulation is completed.

3 Requirements-Based Verification

3-36

Integrating Results from an External Result file
In this example, you link a requirement to a test result file that is in Excel Format. The verification
status in the Simulink Requirements Editor reflects the test results. The external results file is an
Excel file called results.xlsx. The verification status in Simulink Requirements updates based on
the values of the cells in the Excel sheet. A unique ID in the Test column identifies each result in the
Status column. The Test and Status labels are contained in a header row.

Workflow:

Suppose you want to update the verification information for the counterSetsValue test case based
on the Excel status log. Follow these steps to create and verify links to the result file:

1 You start with opening the Requirements set counter_req.slreqx'.
2 You create and register the Linktype using the API.
3 You create the link.
4 You view the Verification Status.

Section 1: Open the Requirements Set

Before creating links, open the requirements file containing the requirements.

reqSet = slreq.open('counter_req.slreqx');

This will open the requirements set 'counter_req.slreqx'.

 Integrating Results from an External Result file

3-37

Section 2: Create and Register Custom Linktype

The domain registration needed for this example is written in 'linktype_myexcelresults.m'.
The template file for domain registrations is available at: matlabroot/toolbox/slrequirements/
linktype_examples/linktype_TEMPLATE.m. Take a look at the implementation of GetResultFcn in
the domain registration file:

edit linktype_myexcelresults;

Register the custom linktype:

rmi register linktype_myexcelresults;

Warning: Link type "'linktype_myexcelresults'" is already registered

If the command returns any warning, then you must unregister the file and follow the command
again. Unregister the file by entering: rmi unregister linktype_myexcelresults

Section 3: Create the Link

Make the struct containing properties of the external test. Follow these steps to create the link:

externalSource.id = 'counterSetsValue';
externalSource.artifact = 'results.xlsx';
externalSource.domain = 'linktype_myexcelresults';

Find the requirement related to the link by typing:

requirement = reqSet.find('Type', 'Requirement', 'SID', 2);

Create the link by entering:

link = slreq.createLink(requirement, externalSource);

This creates the link as test case counterSetsValue to the requirement 'SID'. In Requirements
Editor, the link appears in the Links Confirmed by section.

3 Requirements-Based Verification

3-38

Section 4: View the Verification Status

To update the verification status for the requirements set, type:

reqSet.updateVerificationStatus;

Fetch the verification status for the requirement:

status = reqSet.getVerificationStatus;

The Requirements Editor shows the verification status for entire requirements set that are passes or
failed.

 Integrating Results from an External Result file

3-39

The verification status for the requirements for the counterSetsValue is fully verified. The
Requirements Editor shows the overall verfication statuses for all the other requirements links
associated with counter_req.slreqx.

reqSet = slreq.open('counter_req.slreqx');

If unable to see the verification status, click on the Refresh button to see the verification status for
the requirements in the Requirements Editor. The verification status shows that out of three tests,
one test passed.

Clear the requirements once the simulation is completed.

3 Requirements-Based Verification

3-40

Integrating results from a custom authored MUnit script as a
test

You can integrate the results from a MATLAB xml Unit test by linking to a test script. In this example,
you link a requirement to a MATLAB Unit test case script. The verification status in the Simulink
Requirements Editor reflects the test results.

Workflow

The test is run with a customized test runner using XML Plugin producing a JUnit output. The XML
Plugin class creates a plugin that writes test results to a file called myMUnitResults.xml. You want
to link the results of the test to a requirement in counter_req.slreqx. Follow these steps to create
and view the verification status with a test case called testCounterStartsAtZero in
CounterTests.m:

1 You start with opening the Requirements set counter_req.slreqx'.
2 You create and register the Linktype using the API.
3 You create the link.
4 You view the Verification Status.

Section 1: Open the Requirements Set

Open the requirements file counter_req.slreqx in the Requirements Editor.

reqSet = slreq.open('counter_req.slreqx');

This will open the requirements set 'counter_req.slreqx'.

Section 2: Create and Register Custom Linktype

The domain registration needed for this example is written in 'linktype_mymljunitresults.m'.
The template file for domain registrations is available at: matlabroot/toolbox/slrequirements/
linktype_examples/linktype_TEMPLATE.m. Take a look at the implementation of GetResultFcn in
the domain registration file:

edit linktype_mymljunitresults;

Register the custom linktype:

 Integrating results from a custom authored MUnit script as a test

3-41

rmi register linktype_mymljunitresults;

If the command returns any warning, then you must unregister the file and follow the command
again. Unregister the file by entering: rmi unregister linktype_mymljunitresults

Section 3: Create the Link

Make the struct containing properties of the external test. Follow these steps to create the link:

externalSource.id = 'testCounterStartsAtZero';
externalSource.artifact = 'counterTests.m';
externalSource.domain = 'linktype_mymljunitresults';

Find the requirement related to the link by typing:

requirement = reqSet.find('Type', 'Requirement', 'SID', 2);

Create the link by entering:

link = slreq.createLink(requirement, externalSource);

This creates the link as test case testCounterStartsAtZero to the requirement 'SID'. In
Requirements Editor, the link appears in the Links Confirmed by section.

Section 4: View the Verification Status

To update the verification status for the requirements set, type:

reqSet.updateVerificationStatus;

Fetch the verification status for the requirement:

status = reqSet.getVerificationStatus;

The Requirements Editor shows the verification status for entire requirements set that are passes or
failed.

3 Requirements-Based Verification

3-42

The verification status for the requirements for the testCounterStartsAtZero is fully verified.
The Requirements Editor shows the overall verfication statuses for all the other requirements links
associated with counter_req.slreqx.

reqSet = slreq.open('counter_req.slreqx');

If you are unable to see the verification status, click on the Refresh button to see the verification
status for the requirements in the Requirements Editor. The verification status shows that out of
three tests, one test passed.

 Integrating results from a custom authored MUnit script as a test

3-43

Clear the requirements once the simulation is completed.

3 Requirements-Based Verification

3-44

Change Tracking and Team-Based
Workflows

• “Requirements-Based Development in Projects” on page 4-2
• “Track Changes to Requirements Links” on page 4-3
• “Compare Requirements Sets” on page 4-6
• “Compare Link Sets” on page 4-7
• “Report Requirements Information” on page 4-8

4

Requirements-Based Development in Projects
Projects help you organize and share files, and work with source control systems. Since
requirements-based development commonly involves multiple contributors and multiple files,
consider organizing your models, requirements, links, and tests in a project. For more information,
see “What Are Projects?” (Simulink).

Organizing Requirements, Models, and Tests
To facilitate multiple individuals working on a project in source control, consider the following:

• Store models, requirements, and tests in separate folders within a project.
• Add folders to the project path, so that link sources and destinations resolve when you open a

requirements set or model.
• Use a source control tool, such as Git, to collaborate on projects and project files.
• When you link requirements to a model (or code, test, etc.) the traceability data file saves in the

same folder as the model. Store traceability data files in a folder with the respective model, code,
or test.

• Opening a requirement set in a project loads other requirement and link sets in the project.

This is a simple project with a model, several tests, and a requirement set.

If your project includes shared library models, requirements sets, requirements links, and supporting
files, you can create requirements links between your local models and shared requirements. You can
also create requirements between your local requirements and shared models and supporting files.
Shared library requirements data is integrated into your local requirements data.

You can refresh requirement link information by using the slreq.refreshLinkDependencies
command.

4 Change Tracking and Team-Based Workflows

4-2

Track Changes to Requirements Links
After you “Author Requirements in Simulink” on page 1-2 and create links between design elements
and your requirements, Simulink Requirements tracks the requirements links and detects when link
artifacts (source or destination) or requirements change. In the Requirements Editor, changes to
requirements links are highlighted in red. You can then resolve link issues or clear links changes that
have no impact on the requirement status. Track change information from the Links view of the
Requirements Editor.

Enable Change Tracking for Requirements Links
To view the change information for your requirements links:

1 Open the Requirements Editor. In the Apps tab, click Requirements Manager. In the
Requirements tab, click Requirements Editor.

2 Open a requirements set.
3 From the View drop-down list, select Links.
4 To enable change tracking from the Requirements Editor, select Display > Change

Information.

The Links view of the Requirements Editor highlights any links with revision mismatch issues in
red.

Alternatively, you can enable change tracking for requirement links from the Requirements
Perspective. Right-click an item in the Requirements Perspective and select Change Information.

 Track Changes to Requirements Links

4-3

The Change Information section for each link details any requirement link change issues. Simulink
Requirements reports any source or destination requirements that have more recent changes than
when you established the requirement link. Simulink Requirements considers the revision
information and timestamp for a requirement item when the link was created and the current revision
information and timestamp for the requirement item.

Review Requirements Change Issues from the Requirements View

You can view change issues associated with a particular requirement item from the Requirements
view. After you “Enable Change Tracking for Requirements Links” on page 4-3, select a requirement
item from the Requirements view. Any requirements items with requirement link change issues are
highlighted in red. The relevant requirement link with a change issue is also highlighted in red in the
Links section of the Requirements Editor.

To view the link change issue, and then “Resolve Change Issues for Requirement Links” on page 4-
4, click the link icon to the right of requirement link.

Resolve Change Issues for Requirement Links
If you enable change tracking for requirements links, changes to your requirements that cause link
issues are highlighted in red in the Links view of the Requirements Editor. If a change has no impact,
you can clear the issue to update to the latest revision number for the requirement. In the Links view
of the Requirements Editor, select the link with a link change issue. In the Change Information
section, click Clear Issue. To clear all change issues for an entire link set, right-click the link set and
select Clear All Change Issues.

If the link issue affects the status of your requirements, you can change the model, the requirements,
the test cases, or the links themselves to resolve the discrepancy between the requirements and your
model and testing.

Add Comments to Links
Whenever you resolve link issues, it is good practice to add a comment to the link describing the
action that you took. Each link has a Comments section. To add a comment:

4 Change Tracking and Team-Based Workflows

4-4

1 In the Links view of the Requirements Editor, select the link.
2 In the Comments section, select Add Comment.

Considerations for Using Links Change Tracking
Change tracking information is updated only when you enable change tracking or when you manually
refresh the change tracking information. To refresh the change tracking information manually:

• From the Requirements Editor, select Analysis > Refresh Change Information .
• From the Requirements Perspective, or from the Requirements Editor, click the Refresh button

.

Simulink Requirements provides change tracking information only for link sources that are resolved
when you view the change information.

You can resolve some links by using the Requirements Editor.

1 In the Links view of the Requirements Editor, select the link with an unresolved link item. The
Change Information section shows Unresolved Link Item(s).

2 To open the link source, click the Source link in the Properties section.

When the link model opens, the link source is loaded and the Change Information section displays a
resolved link. For more information, see “Review Requirement Links” on page 2-13.

See Also

More About
• “Create a Project from a Model” (Simulink)

 Track Changes to Requirements Links

4-5

Compare Requirements Sets
To compare differences between two requirements sets, use the “Compare Revisions” (Simulink) tool.

Compare Two .slreqx Simulink Requirements Sets
If you have two versions of a .slreqx Simulink requirements set file, use the Simulink “Compare
Revisions” (Simulink) tool to find any differences between the two files.

Select Two Requirements Set Files to Compare

1 In the Current Folder pane of MATLAB, or in the Project Files View of your project, select the
first file for comparison.

2 In the Current Folder pane of MATLAB, or in the Project Files View of your project, press Ctrl,
and then click the second file for comparison.

3 Right-click either file and select Compare Selected Files/Folders.

Select One File to Compare

1 In the Current Folder pane of MATLAB, right-click first file and select Compare Against >
Choose.

2 Select the second file for comparison and select Simulink Requirements Comparison as the
Comparison type.

The Simulink comparison tool shows the differences between the two .slreqx requirements sets.
The comparison shows which specific requirements in a requirement set changed and which fields of
each requirement changed.

Note The comparison tool shows only changes in saved .slreqx requirements sets. Changes that
have occurred in memory but are not yet saved to file are not shown.

To view a requirements item in the Requirements Editor, highlight the requirements item and click
Highlight Now. The requirements item from the right comparison pane opens in the Requirements
Editor. If you select Always Highlight, the Requirements Editor opens to the selected requirements
item whenever you click one.

Review Changes in Source-Controlled Files
If you use a separate change management tool to manage changes to your projects, you can use the
Simulink comparison tool with your source-controlled Simulink Requirements files. For more
information, see “Compare Revisions” (Simulink).

4 Change Tracking and Team-Based Workflows

4-6

Compare Link Sets
If you have two versions of a .slmx Simulink link set file, use the Simulink “Compare Revisions”
(Simulink) tool to find any differences between the two files.

Select Two Link Set Files to Compare

1 In the Current Folder pane of MATLAB, or in the Project Files View of your project, select the
first file for comparison.

2 In the Current Folder pane of MATLAB, or in the Project Files View of your project, press Ctrl,
and then click the second file for comparison.

3 Right-click either file and select Compare Selected Files/Folders.

Select One File to Compare

1 In the Current Folder pane of MATLAB, right-click the first file and select Compare Against >
Choose.

2 Select the second file for comparison and select Simulink Requirements Comparison as the
Comparison type.

The Simulink comparison tool shows the differences between the two .slmx link set files. The
comparison shows which specific links in a link set changed and which fields of each link changed.

Note The comparison tool shows only changes in saved .slmx link sets. Changes that have occurred
in memory but are not yet saved to file are not shown.

To view a link in the Links View of the Requirements Editor, highlight the link and click Highlight
Now. The link from the right comparison pane opens in the Links View of the Requirements Editor. If
you select Always Highlight, the Requirements Editor opens to the selected link item whenever you
click one.

 Compare Link Sets

4-7

Report Requirements Information
To document your requirements for review, you can create a report for one or more requirement sets.
You can select the requirements information to contain in the report, including:

• Navigable links to model entities and other requirements
• Requirements change and revision information
• Implementation and Verification status summaries

You can create reports in .docx (Microsoft Word), PDF and HTML formats. If you select multiple
requirement sets for reporting, the information is contained in a single report.

You can create reports using the Report Generation Options dialog box or programmatically by
using the slreq.generateReport function.

4 Change Tracking and Team-Based Workflows

4-8

To create a report by using the Report Generation Options dialog box:

1 Right-click a requirement set in the Requirements Editor or Requirements Browser, and select
Generate Report.

 Report Requirements Information

4-9

To create a report with multiple requirements sets, select Report > Generate Report in the
Requirements Editor menu.

The Report Generation Options dialog box opens.
2 Set the report file name and location by clicking the Select button next to the file name.
3 Select report content options.
4 Select requirement sets to include in the report. The dialog box displays requirement sets that

are loaded in memory. To include a requirement set that does not appear in the list, first open the
requirement set using the Requirements Editor.

5 Click Generate Report.

The Report Appendix provides summaries of all the change issues and requirement set artifacts that
you create the report for.

Report Navigation Links
The requirements report contains links you can use to navigate to model items and other
requirements. For example, this requirement is implemented by two model entities, and is derived
from two requirements. Ctrl+click a link to open the linked item.

If you use slreq.generateReport to generate a report as a Microsoft Word document, you will
need to manually update the Table of Contents. Open the report, select the contents, and press F9.

See Also
slreq.generateReport | slreq.getReportOptions

4 Change Tracking and Team-Based Workflows

4-10

Requirements Management Interface
Setup

• “Configure RMI for Interaction with Microsoft Office and IBMRational DOORS” on page 5-2
• “Requirements Link Storage” on page 5-4
• “Supported Requirements Document Types” on page 5-8
• “Requirements Settings” on page 5-10

5

Configure RMI for Interaction with Microsoft Office and
IBMRational DOORS

The Requirements Management Interface (RMI) communicates with external tools such as Microsoft
Office and IBMRational DOORS so that you can establish links between requirements and Simulink
model elements.

Configure the RMI to:

• Use ActiveX® controls for navigation from Microsoft Office documents to Simulink models (PC
only).

• Use the RMI with IBMRational DOORS software (Windows only).
• Use the RMI with IBMRational DOORS Next Generation (DNG) web server.

Configure RMI for Microsoft Office
When you work with older requirements documents that include ActiveX controls inserted by
previous versions of Simulink, register ActiveX controls. More recent Simulink versions use HTTP
hyperlinks to navigate from Microsoft Office to Simulink.

1 Run MATLAB as an administrator.
2 At the command prompt, enter:

rmi setup
3 Press Y to register the current MATLAB installation as an ActiveX Automation Server.

Configure RMI for IBMRational DOORS
You must configure your IBMRational DOORS installation to communicate with MATLAB.

1 Run MATLAB as an administrator.
2 At the command prompt, enter:

rmi setup
3 Press N to skip the ActiveX Automation Server setup.

The interface setup utility opens.
4 Verify the path to your IBMRational DOORS installation. Press 1 to configure the software to

communicate with MATLAB.
5 If the DOORS installation was not detected in the previous step, press 2 to enter the installation

folder.

Note You can directly access the IBMRational DOORS – MATLAB Interface setup utility. At the
command prompt, enter:

rmi setup doors

5 Requirements Management Interface Setup

5-2

Configure RMI for IBM Rational DOORS Next Generation
1 At the command prompt, enter:

rmi setup
2 You do not need to set up the ActiveX Automation Server because it is not required for

requirements linking with IBM Rational DOORS Next Generation. Skip this step by pressing N.
3 If you have IBM Rational DOORS installed, you are prompted to select the installation path to

configure for communication with MATLAB. If you are using RMI with IBM Rational DOORS Next
Generation only, you do not need to configure IBM Rational DOORS. Skip this step by pressing 3.

4 Configure RMI by pressing Y.
5 Complete the setup by entering the IBM Rational DOORS Next Generation Server Address and

the Port Number in the next prompt.

Install the Simulink Requirements Widget in IBM Rational DOORS Next Generation

The Simulink Requirements widget enables you to propagate selection information from IBM
Rational DOORS Next Generation.

1 In the Windows File Explorer, navigate to the folder toolbox\slrequirements
\slrequirements\resources in your MATLAB installation.

2 Copy the dngsllink_config folder into the extensions subfolder of your IBM Rational
DOORS Next Generation installation. The location of this folder depends on your server version.

3 After copying the dngsllink folder to your server, add the Simulink Requirements widget to
the Mini Dashboard in DOORSNext Generation.

4 In the Mini Dashboard, select Add Widget > Add OpenSocial Gadget.
5 Specify the URL to dngsllink_config.xml that corresponds to the extensions\

dngsllink_config subfolder in your server installation folder.

For example, if you have Liberty server version 6.0.6 installed, the extensions subfolder is located
in: JazzTeamServer_6.0.06\server\liberty\servers\clm\dropins\war\extensions. The
corresponding URL for adding the widget is: https://JAZZSERVERNAME:9443/extensions/
dngsllink_config/dngsllink_config.xml.

 Configure RMI for Interaction with Microsoft Office and IBMRational DOORS

5-3

Requirements Link Storage
The Requirements Management Interface (RMI) stores the requirements links associated with your
Simulink models in two modes - internal and external. When you create links from a model to
requirements, by default, the Requirements Management Interface (RMI) stores the link information
in an external .slmx file in the same folder as the model. External storage does not modify your
model when creating or modifying requirements links.

To specify the requirements link storage setting:

1 Open the Requirements Settings. In the Apps tab, click Requirements Viewer. In the
Requirements Viewer tab, click Link Settings.

2 In the Requirements Settings dialog box, select the Storage tab.
3 Under Default storage location for requirements links data:

• To enable internal storage, select Store internally (embedded in Simulink diagram file).
• To enable external storage, select Store externally (in a separate *.slmx file).

This setting applies immediately, and applies to new models and existing models that do not contain
requirements links.

If you open a model that already has requirements links, the RMI uses the storage mechanism you
used previously with that model, regardless of what your default storage setting is.

When links are stored with the model (internal storage), the time stamp and version number of the
model changes every time you modify your requirements links.

Save Requirements Links in External Storage
The Requirements Management Interface (RMI) stores externally stored requirements links in a file
whose name is based on the model file. Because of this, before you create requirements links to be
stored in an external file, you must save the model with a value file name.

You add, modify, and, delete requirements links in external storage the same way you do when the
requirements links are stored in the model file. The main difference is when you change externally
stored links, the model file does not change. The asterisk in the title bar of the model window that
indicates a model has unsaved changes does not appear when you change requirements links.
However, when you close the model, the RMI asks if you want to save the requirements links
modifications.

There are several ways to save requirements links that are stored in an external file, as listed in the
following table.

Select... To...
In the Apps tab, click Requirements Manager.
In the Requirements tab, click Save All.

Save the requirements links in an external file
using a file name that you specify. The model
itself is not saved.

In the Apps tab, click Requirements Manager.
In the Requirements tab, click Save Links
Only.

Save the requirements links in an external file
using the default file name, model_name.slmx,
or to the previously specified file. The model itself
is not saved.

5 Requirements Management Interface Setup

5-4

Select... To...
In the Simulation tab, click Save. Save the current requirements links to an

external file named model_name.slmx, or to the
previously specified file. Model changes are also
saved.

In the Simulation tab, Save > Save As Rename and save the model and the external
requirements links. The external file is saved as
new_model_name.slmx.

Load Requirements Links from External Storage
RMI attempts to load internally stored model requirements links from an .slmx file — either the
default file or a previously specified file. If no .slmx file is found, RMI does not display requirements
links.

Your links may be stored in an external file. To load links:

1 In the Apps tab, click Requirements Viewer.
2 In the Requirements Viewer tab, click Load Links.
3 Select the file from which to load the requirements links.
4 Click Open to load the links from the selected file.

Save changes to your links before loading links from another file.

Move Internally Stored Requirements Links to External Storage
If you have a model with requirements links that are stored with the model, you can move those links
to an external file. When you move internally stored links to a file, the RMI deleted the internally
stored links from the model file and saves the model. From this point on, the data exists only in the
external file.

1 Open the model that contains internally stored requirements links.
2 In the Apps tab, click Requirements Manager. In the Requirements tab, click Save All.

The Select a file to store RMI data dialog box prompts you to save the file with the default name
model_name.slmx.

3 Accept the default name, or enter a different file name if required.
4 Click Save.

Note Use the default name for externally stored requirements. For more information about this
recommendation, see “Guidelines for External Storage of Requirements Links” on page 5-6.

Move Externally Stored Requirements Links to the Model File
If you have a model with requirements links that are stored in an external file, you can move those
links to the model file.

1 Open the model that has only externally stored requirements links.

 Requirements Link Storage

5-5

2 Make sure the right set of requirements links are loaded from the external file.
3 In the Requirements tab, select Link Settings > Save Links in Model File.

An asterisk appears next to the model name in the title bar of the model window indicating that
your model now has unsaved changes.

4 Save the model with the requirements links.

From this point on, the RMI stores requirements links internally, in the model file. When you add,
modify, or delete links, the changes are stored with the model, even if the Default storage location
for requirements links data option is set to Store externally (in a separate *.slmx file).

External Storage
The first time you create links to requirements in a Simulink model, the RMI uses your designated
storage preference. When you reopen the model, the RMI loads the internally stored links, or the
links from the external file, as long as the file exists with the same name and location as when you
last saved the links.

The RMI allows you to save your links file as a different name or in a different folder. However, when
you start with the links file in a nondefault location, you must manually load those links into the
model. After you load those links, the RMI associates that model with that file and loads the links
automatically.

As you work with your model, the RMI stores links using the same storage as the existing links. For
example, if you open a model that has internally stored requirements links, new links are also stored
internally. This is true even if your preference is set to external storage.

Requirements links must be stored either with the model or in an external file. You cannot mix
internal and external storage within a given model.

To see an example of the external storage capability using a Simulink model, at the command line,
enter:

slvnvdemo_powerwindow_external

Guidelines for External Storage of Requirements Links
Follow these guidelines when storing requirements links in an external file.

• When sharing models, use the default name and location.

By default, external requirements are stored in a file named model_name.slmx in the same
folder as the model. If you give your model to others to review the requirements traceability, give
the reviewer both the model and .slmx files. That way, when you load the model, the RMI
automatically loads the links file.

• Do not rename the model outside of Simulink.

If you need to resave the model with a new name or in a different location, in the Simulation tab,
click Save. Selecting this option causes the RMI to resave the corresponding .slmx file using the
model name and in the same location as the model.

• Be aware of unsaved requirements changes.

5 Requirements Management Interface Setup

5-6

If you create new requirements links that are stored externally, your model does not indicate that
it has unsaved changes, because the model file itself has not changed. You can explicitly save the
links, or, when you close the model, the RMI prompts you to save the requirements links. When
you save the model, the RMI saves the links in the external file.

 Requirements Link Storage

5-7

Supported Requirements Document Types
The Requirements Management Interface (RMI) supports linking with external documents of the
types listed in the table below. For each supported requirements document type, the table lists the
options for requirements locations within the document.

If you would like to implement linking with a requirements document of a type that is not listed in the
table below, you can register a custom requirements document type with the RMI. For more
information, see “Create a Custom Requirements Link Type” on page 10-8.

Requirements
Document Type

Location Options

Microsoft Word 2003
or later

• Named item — A bookmark name. The RMI links to the location of that
bookmark in the document. The most stable location identifier because the
link is maintained when the target content is modified or moved.

• Search text — A search string. The RMI links to the first occurrence of
that string in the document. This search is not case sensitive.

• Page/item number — A page number. The RMI links to the top of the
specified page.

Excel 2003 or later • Named item — A named range of cells. The RMI links to that named item
in the workbook. The most stable location identifier because the link is
maintained when the target content is modified or moved.

• Search text — A search string. The RMI links to the first occurrence of
that string in the workbook. This search is not case sensitive.

• Sheet range — A cell location in a workbook:

• Cell number (A1, C13)
• Range of cells (C5:D7)
• Range of cells on another worksheet (Sheet1!A1:B4)

The RMI links to that cell or cells.
IBM Rational DOORS Page/item number — The unique numeric ID of the target DOORS object.

The RMI links to that object.
Text • Search text — A search string. The RMI links to the first occurrence of

that string within the document. This search is not case sensitive.
• Line number — A line number. The RMI links to the beginning of that

line.
HTML You can link only to a named anchor.

For example, in your HTML requirements document, if you define the anchor

 ...contents...

in the Location field, enter valve_timing or, from the document index,
choose the anchor name.

Select the Document Index tab in the “Outgoing Links Editor” on page 10-
6 to see available anchors in an HTML file.

5 Requirements Management Interface Setup

5-8

Requirements
Document Type

Location Options

Web browser URL The RMI can link to a URL location. In the Document field, type the URL
string. When you click the link, the document opens in a Web browser:

• Named item — An anchor name. The RMI links to that location on the
Web page at that URL.

PDF Navigation will open a PDF document but will not scroll to a specific page or
bookmark.

The RMI cannot create a document index of bookmarks in PDF files.

 Supported Requirements Document Types

5-9

Requirements Settings
You can manage your RMI preferences in the Requirements Settings dialog box. These settings are
global and not associated with a particular model. To open the Requirements Settings dialog box, in
the Apps tab, click Requirements Viewer. In the Requirements Viewer tab, click Link Settings.

In this dialog box, you can select the:

• Storage tab to set the default way in which the RMI stores requirements links in a model. For
storage information, see “Requirements Link Storage” on page 5-4.

• Selection Linking tab to set the options for linking to the active selection in a supported
document. For setting information, see “Selection Linking Tab” on page 5-10.

• Filters tab to set the options for filtering requirements in a model. For filtering information, see
“Configure Requirements Filtering” on page 5-15.

• Report tab to customize the requirements report without using the Report Generator. For setting
information, see “Customize Requirements Report Using the RMI Settings” on page 11-18.

Selection Linking Tab
In the Requirements Settings dialog box, on the Selection Linking tab, use the following options for
linking to the active selection in a supported document.

Options Description
For linking to the active selection within an external document:
Enabled applications Enable selection-based linking shortcuts to

Microsoft Word, Excel, or DOORS applications.
Document file reference Select type of file reference. For information on

what settings to use, see “Document Path
Storage” on page 11-34.

Apply this keyword to new links Enter text to attach to the links you create. For
more information about user tags, see “Filter
Requirements with User Tags” on page 5-11.

When creating selection-based links:
Modify destination for bidirectional linking Creates links both to and from selected link

destination.
Store absolute path to model file Select to store the absolute path to the Simulink

model file.
Use custom bitmap for navigation controls in
documents

Select and browse for your bitmap. You can use
your own bitmap file to control the appearance of
navigation links in your document.

Use ActiveX buttons in Word and Excel
(backward compatibility)

Select to use legacy ActiveX controls to create
links in Microsoft Word and Excel applications.
By default, if not selected, you create URL-based
links.

5 Requirements Management Interface Setup

5-10

Filter Requirements with User Tags
• “User Tags and Requirements Filtering” on page 5-11
• “Apply a User Tag to a Requirement” on page 5-11
• “Filter, Highlight, and Report with User Tags” on page 5-12
• “Apply User Tags During Selection-Based Linking” on page 5-14
• “Configure Requirements Filtering” on page 5-15

User Tags and Requirements Filtering

User tags are user-defined keywords that you associate with specific requirements. With user tags,
you can highlight a model or generate a requirements report for a model in the following ways:

• Highlight or report only those requirements that have a specific user tag.
• Highlight or report only those requirements that have one of several user tags.
• Do not highlight and report requirements that have a specific user tag.

Apply a User Tag to a Requirement

To apply one or more user tags to a newly created requirement:

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Open the fuel rate controller subsystem.
3 To open the requirements document, right-click the Airflow calculation subsystem and select

Requirements > Open Outgoing Links dialog.

The Requirements Traceability Link Editor opens with the details about the requirement that you
created.

 Requirements Settings

5-11

4 In the Keywords field, enter one or more keywords, separated by commas, that the RMI can use
to filter requirements. In this example, after design, enter a comma, followed by the user tag
test to specify a second user tag for this requirement.

User tags:

• Are not case sensitive.
• Can consist of multiple words. For example, if you enter design requirement, the entire

phrase constitutes the user tag. Separate user tags with commas.
5 Click Apply or OK to save the changes.

Filter, Highlight, and Report with User Tags

The slvnvdemo_fuelsys_officereq model includes several requirements with the user tag
design. This section describes how to highlight only those model objects that have the user tag,
test.

1 Remove highlighting from the slvnvdemo_fuelsys_officereq model. In the Apps tab, click
Requirements. In the Requirements tab, click Highlight Links.

2 Select Link SettingsLinking Options.
3 In the Requirements Settings dialog box, click the Filters tab.

5 Requirements Management Interface Setup

5-12

4 To enable filtering with user tags, click the Filter links by user tags when highlighting and
reporting requirements option.

5 To include only those requirements that have the user tag, test, enter test in the Include
links with any of these tags field.

6 Click Close.
7 In the Requirements tab, click Highlight Links.

The RMI highlights only those model objects whose requirements have the user tag test, for
example, the MAP sensor.

8 Reopen the Requirements Settings dialog box to the Filters tab.
9 In the Include links with any of these tags field, delete test. In the Exclude links with any

of these tags field, add test.

In the model, the highlighting changes to exclude objects whose requirements have the test
user tag. The MAP sensor and Test inputs blocks are no longer highlighted.

10 In the Requirements tab, select Share > Generate Model Traceability Report.

The report does not include information about objects whose requirements have the test user
tag.

 Requirements Settings

5-13

Apply User Tags During Selection-Based Linking

When creating a succession of requirements links, you can apply the same user tags to all links
automatically. This capability, also known as selection-based linking, is available only when you are
creating links to selected objects in the requirements documents.

When creating selection-based links, specify one or more user tags to apply to requirements:

1 In the Requirements Viewer tab, click Link Settings.
2 Select the Selection Linking tab.

3 In the Apply this keyword to new links field, enter one or more user tags, separated by
commas.

The RMI applies these user tags to all new selection-based requirements links that you create.
4 Click Close to close the Requirements Settings dialog box.
5 In a requirements document, select the specific requirement text.
6 Right-click a model object and select Requirements.

The selection-based linking options specify which user tags the RMI applies to the link that you
create. In the following example, you can apply the user tags design, general, and reqtslink
to the link that you create to your selected text.

5 Requirements Management Interface Setup

5-14

Configure Requirements Filtering

In the Requirements Settings dialog box, in the Filters tab, use the following options for filtering
requirements in a model.

Option Description
Filter links by keyword when highlighting
and reporting requirements

Enables filtering for highlighting and reporting,
based on specified user tags.

Include links with any of these tags Includes information about requirements that
have the specified user tags. Separate multiple
user tags with commas.

Exclude links with any of these tags Excludes information about requirements that
have the specified user tags. Separate multiple
user tags with commas or spaces.

Apply same filters to link labels Disables link labels in context menus if one of the
specified filters are satisfied, for example, if a
requirement has a designated user tag.

Apply same filters in consistency checking Includes or excludes requirements with specified
user tags when running a consistency check
between a model and its associated requirements
documents.

Under Link type filters, Disable
synchronization item links in context menus

Disables links to DOORS surrogate items from
the context menus when you right-click a model
object. This option does not depend on current
user tag filters.

 Requirements Settings

5-15

Microsoft Office Traceability

• “Link to Requirements in Microsoft Word Documents” on page 6-2
• “Link to Requirements in Excel Workbooks” on page 6-6
• “Navigate to Requirements in Microsoft Office Documents from Simulink” on page 6-9

6

Link to Requirements in Microsoft Word Documents

Create Bookmarks in a Microsoft Word Requirements Document
You can identify requirements for linking by bookmarking your Word requirements documents. You
use an existing bookmark when you create a link from a requirement.

Compared to creating bookmarks when you link, including bookmarks in your Word document before
you link allows you to:

• Give a bookmark a meaningful name that represents the requirement content.
• Link to the requirements document using RMI, without modifying the requirements document.

Note When you link to an existing bookmark, navigating the link highlights the entire range of the
existing bookmark. Therefore, when you create a bookmark for requirement linking, make sure to
select only the document information relevant to your requirement.

If you have a requirements document containing bookmarks, follow these steps to create
requirements links from your Simulink model to the bookmarks:

1 Open your model.
2 Open your Microsoft Word requirements document that contains bookmarks that identify

requirements.
3 Right-click a block in the model that you want to link to a requirement and select Requirements

> Open Link Editor

The Requirements Traceability Link Editor opens.
4 Click New.
5 Click Browse and navigate to the bookmarked document.
6 Open the document. RMI populates the Document and Document type fields.
7 Click the Document Index tab of the Link Editor.

The Document Index tab lists bookmarks in the requirements document and section headings
(text that you have styled as Heading 1, Heading 2, etc.).

The document index lists the bookmarks in alphabetical order.

6 Microsoft Office Traceability

6-2

8 Select the bookmark that you want to link the block to and click OK.

RMI links from the block to the bookmark in the requirements document without modifying the
document.

Open the Example Model and Associated Requirements Document
This example describes how to create links from objects in a Simulink model to selected requirements
text in a Word document.

Navigate from the model to the requirements document:

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Open a requirements document associated with that model:

rmi('view','slvnvdemo_fuelsys_officereq',1);

Keep the example model and the requirements document open.

 Link to Requirements in Microsoft Word Documents

6-3

matlab:slvnvdemo_fuelsys_officereq

Create a Link from a Model Object to a Microsoft Word Requirements
Document
Create a link from the Airflow calculation subsystem in the slvnvdemo_fuelsys_officereq model
to selected text in the requirements document:

1 In slvnvdemo_FuelSys_DesignDescription.docx, find the section titled 2.2
Determination of pumping efficiency.

2 Select the header text.
3 Open the example model:

slvnvdemo_fuelsys_officereq
4 In the Apps tab, click Requirements Manager. In the Requirements tab, select Link Settings

> Linking Options. The Requirements Settings dialog box opens.
5 On the Selection Linking tab of the Requirements Settings dialog box:

• Set the Document file reference option to path relative to model folder.
• Enable Modify destination for bidirectional linking.

When you select this option, every time you create a selection-based link from a model object
to a requirement, the RMI inserts navigation objects at the designated location.

For more information about the settings, see “Requirements Settings” on page 5-10.
6 Double-click the fuel rate controller subsystem to open it.
7 Open the Airflow calculation subsystem.
8 Right-click the Pumping Constant block and select Requirements > Link to Selection in

Word.

The RMI inserts a bookmark at that location in the requirements document and assigns it a
generic name, in this case, Simulink_requirement_item_7.

Note Run both MATLAB and Microsoft Word with the same privilege level. Running either as an
administrator can prevent link creation.

9 To verify that the link was created, in the Requirements tab, click Highlight Links.

The Pumping Constant block, and other blocks with requirements links, are highlighted.
10 To navigate to the link, right-click the Pumping Constant block and select Requirements > 1.

“Determination of pumping efficiency”.

The section 2.2 Determination of pumping efficiency is displayed, selected in the
requirements document.

Keep the example model and the requirements document open.

View Link Details

To view the details of the link that you just created, right-click the Pumping Constant block and
select Requirements > Open Outgoing Links dialog.

The link editor dialog box opens.

6 Microsoft Office Traceability

6-4

The dialog box contains the following information for the new link:

• Link description: Determination of pumping efficiency, which matches the text of the
requirements document.

• Document name: slvnvdemo_FuelSys_DesignDescription.docx.
• Document type: Microsoft Word.
• The type and identifier of the location in the requirements document. RMI bookmarks the Word

document with a bookmark named Simulink_requirement_item_7.

To avoid RMI modifying Word document when it creates links, bookmark the Word document
before linking, as described in “Create Bookmarks in a Microsoft Word Requirements Document”
on page 6-2.

• Keyword, a user-defined keyword. This link does not have a keyword. For more information about
keywords, see “Filter Requirements with User Tags” on page 5-11.

 Link to Requirements in Microsoft Word Documents

6-5

Link to Requirements in Excel Workbooks

Navigate from a Model Object to Requirements in an Excel Workbook
1 Open the example model. At the command line, enter:

slvnvdemo_fuelsys_officereq
2 In the Apps tab, click Requirements Manager. In the Requirements tab, click Highlight

Links to highlight the model objects with requirements.
3 Right-click the Test inputs Signal Builder block and select Requirements > 1. “Normal mode

of operation”.

The slvnvdemo_FuelSys_TestScenarios.xlsx file opens, with the associated cell
highlighted.

Keep the example model and workbook open.

For information about creating requirements links in Signal Builder blocks, see “Link Signal Builder
Blocks to Requirements and Simulink Model Objects” on page 8-8.

Create Requirements Links to the Workbook
1 At the top level of the slvnvdemo_fuelsys_officereq model, right-click the speed sensor

block and select Requirements > Open Outgoing Links dialog.

The Requirements Traceability Link Editor opens.
2 To create a requirements link, click New.
3 In the Description field, enter:

Speed sensor failure

You will link the speed sensor block to the Speed Sensor Failure information in the Excel
requirements document.

4 When you browse and select a requirements document, the RMI stores the document path as
specified by the Document file reference option on the Requirements Settings dialog box,
Selection Linking tab.

For information about which setting to use for your working environment, see “Document Path
Storage” on page 11-34.

5 At the Document field, click Browse to locate and open the
slvnvdemo_FuelSys_TestScenarios.xlsx file.

The Document Type field information changes to Microsoft Excel.
6 In the workbook, the Speed sensor failure information is in cells B22:E22. For the Location

(Type/Identifier) field, select Sheet range and in the second field, enter B22:E22. (The cell
range letters are not case sensitive.)

7 Click Apply or OK to create the link.
8 To confirm that you created the link, right-click the speed sensor block and select Requirements

> 1. “Speed sensor failure”.

6 Microsoft Office Traceability

6-6

The workbook opens, with cells B22:E22 highlighted.

Keep the model and Excel file open.

Link Multiple Model Objects to a Microsoft Excel Workbook
You can use the same technique to link multiple model objects to a requirement in a Excel workbook.
Follow this workflow:

1 In the model window, select the objects to link to a requirement.
2 Right-click one of the selected objects and select Requirements > Open Outgoing Links

dialog.
3 When you browse and select a requirements document, the RMI stores the document path as

specified by the Document file reference option on the Requirements Settings dialog box,
Selection Linking tab.

For information about which setting to use for your working environment, see “Document Path
Storage” on page 11-34.

4 Use the Link Editor to specify information about the Excel requirements document, the
requirement, and the link.

5 Click Apply or OK to create the link.

Change Requirements Links
1 In the slvnvdemo_fuelsys_officereq model, right-click the MAP sensor block and select

Requirements > Open Outgoing Links dialog.

The Requirements Traceability Link Editor opens displaying the information about the
requirements link.

 Link to Requirements in Excel Workbooks

6-7

2 In the Description field, enter:

MAP sensor test scenario

The Keyword field contains the tag test. User tags filter requirements for highlighting and
reporting.

Note For more information about keywords, see “Filter Requirements with User Tags” on page
5-11.

3 Click Apply or OK to save the change.

Keep the example model open.

6 Microsoft Office Traceability

6-8

Navigate to Requirements in Microsoft Office Documents from
Simulink

Enable Linking from Microsoft Office Documents to Simulink Objects
You can capture, track, and manage requirements in Microsoft Word and Excel. When you create a
link from a model object to a requirement RMI stores the link data in the model file. Using this link,
you can navigate from the model object to its associated requirement.

You can also configure the RMI to insert a navigation object in a Microsoft Office document. This
navigation object serves as a link from the requirement to its associated model object.

By default, the RMI does not insert navigation objects into requirements documents. If you want to
insert a navigation object into the requirements document when you create a link from a model object
to a requirement, you must change the RMI’s settings. The following tutorial uses the
slvnvdemo_fuelsys_officereq example model to illustrate how to do this.

To enable linking from a Word or Excel document to the example model:

1 Open the model:

slvnvdemo_fuelsys_officereq

Note You can modify requirements settings in the Requirements Settings dialog box. These
settings are global and not specific to open models. Changes you make apply not only to open
models, but also persist for models you subsequently open. For more information about these
settings, see “Requirements Settings” on page 5-10.

2 In the Apps tab, click Requirements Manager. In the Requirements tab, select Link Settings
> Linking Options.

The Requirements Settings dialog box opens.
3 On the Selection Linking tab of the Requirements Settings dialog box:

• Enable Modify destination for bidirectional linking.

When you select this option, every time you create a selection-based link from a Simulink
object to a requirement, the RMI inserts a navigation object at the designated location in the
requirements document.

• To specify one or more keywords to apply to the links that you create, in the Apply this
keyword to new links field, enter the keyword names.

For more information about keywords, see “User Tags and Requirements Filtering” on page 5-
11.

4 Click Close to close the Requirements Settings dialog box. Keep the
slvnvdemo_fuelsys_officereq model open.

Insert Navigation Objects in Microsoft Office Documents
Use selection-based linking to create a link from the slvnvdemo_fuelsys_officereq model to a
requirements document. If you have configured the RMI as described in “Enable Linking from

 Navigate to Requirements in Microsoft Office Documents from Simulink

6-9

Microsoft Office Documents to Simulink Objects” on page 6-9, the RMI can insert a navigation object
into the requirements document.

1 Open the Word document:

matlabroot/toolbox/slvnv/rmidemos/fuelsys_req_docs/
slvnvdemo_FuelSys_RequirementsSpecification.docx

2 Select the Throttle Sensor header.
3 In the slvnvdemo_fuelsys_officereq model, open the engine gas dynamics subsystem.
4 Right-click the Throttle & Manifold subsystem and select Requirements > Link to Selection in

Word.
5 The RMI inserts an URL-based link into the requirements document.

Link to Multiple Model Objects

If you have several model objects that correspond to one requirement, you can link them to one
requirement with a single navigation object. This eliminates the need to insert multiple navigation
objects for a single requirement. The model objects must be available in the same file.

The workflow for linking multiple model objects to one Microsoft Word entry is as follows:

1 Make sure that the RMI is configured to insert navigation objects into requirements documents,
as described in “Enable Linking from Microsoft Office Documents to Simulink Objects” on page
6-9.

2 Select the Word requirement to link to.
3 Select the model objects that need to link to that requirement.
4 Right-click one of the model objects and select Requirements > Link to Selection in Word.

A single navigation object is inserted at the selected requirement.
5 Navigate to the model by following the navigation object link in Word.

Customize Microsoft Office Navigation Objects
If the RMI is configured to modify destination for bidirectional linking, the RMI inserts a navigation

object into your requirements document. This object looks like the icon for the Simulink software:

Note In Microsoft Office requirements documents, following a navigation object link highlights the
Simulink object that contains a bidirectional link to the associated requirement.

To use an icon of your own choosing for the navigation object:

1 In the Requirements tab, select Link Settings > Linking Options.
2 Select the Selection Linking tab.

6 Microsoft Office Traceability

6-10

3 Select Modify destination for bidirectional linking.

Selecting this option enables the Use custom bitmap for navigation controls in documents
option.

4 Select Use custom bitmap for navigation controls in documents.
5 Click Browse to locate the file you want to use for the navigation objects.

For best results, use an icon file (.ico) or a small (16×16 or 32×32) bitmap image (.bmp) file for
the navigation object. Other types of image files might give unpredictable results.

6 Select the desired file to use for navigation objects and click Open.
7 Close the Requirements Settings dialog box.

The next time you insert a navigation object into a requirements document, the RMI uses the file you
selected.

Navigate Between Microsoft Word Requirement and Model
In “Insert Navigation Objects in Microsoft Office Documents” on page 6-9, you created a link between
a Microsoft Word requirement and the Throttle & Manifold subsystem in the
slvnvdemo_fuelsys_officereq example model. Navigate these links in both directions:

1 In the slvnvdemo_fuelsys_officereq model, right-click the Throttle & Manifold subsystem
and select Requirements > 1. “Throttle Sensor”.

The requirements document opens, and the header in the requirements document is highlighted.

2 In the requirements document, next to Throttle Sensor, follow the navigation object link.

The engine gas dynamics subsystem opens, with the Throttle & Manifold subsystem highlighted.

Navigation from Microsoft Office requirements documents is not automatically enabled upon
MATLAB startup. Navigation is enabled when you create a new requirements link or when you have
enabled bidirectional linking as described in “Insert Navigation Objects in Microsoft Office
Documents” on page 6-9.

Note You cannot navigate to requirements from Microsoft Word 2013 onwards when the document is
open in read-only mode. Alternately, consider disabling the “Open e-mail attachments and other
uneditable files in reading view” option in the Microsoft Word options or using editable documents.

 Navigate to Requirements in Microsoft Office Documents from Simulink

6-11

When attempting navigation from requirements links with the icon, if you get a “Server Not
Found” or similar message, enter the command rmi('httpLink') to activate the internal MATLAB
HTTP server.

6 Microsoft Office Traceability

6-12

Requirements Traceability with IBM
Rational DOORS

• “Configure Requirements Management Interface for IBM Rational DOORS Software”
on page 7-2

• “Link with Requirements in DOORS Next Generation Project” on page 7-4
• “Requirements Traceability with IBM Rational DOORS Next Generation” on page 7-25
• “Navigate to Requirements in IBM Rational DOORS Databases from Simulink” on page 7-28
• “Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules”

on page 7-32
• “Working with IBM Rational DOORS 9 Requirements” on page 7-43

7

Configure Requirements Management Interface for IBM
Rational DOORS Software

Before You Begin
If you plan to use DOORS software with the RMI, make sure to install additional files to establish
communication between the DOORS application and the Simulink software. Follow the instructions in
“Configure RMI for Interaction with Microsoft Office and IBMRational DOORS” on page 5-2.

Manually Install Additional Files for DOORS Software
The setup script automatically copies the required DOORS files to the installation folders. However,
the script might fail because of file permissions in your DOORS installation. If the script fails, change
the file permissions on the DOORS installation folders and rerun the script.

You can also manually install the required files into the specified folders, as described in the following
steps:

1 If the DOORS software is running, close the application.
2 Copy the following files from matlabroot\toolbox\shared\reqmgt\dxl to the

<doors_install_dir>\lib\dxl\addins folder.

addins.idx
addins.hlp

If you have not modified the files, replace any existing versions of the files; otherwise, merge the
contents of both files into a single file.

3 Copy the following files from matlabroot\toolbox\shared\reqmgt\dxl to the
<doors_install_dir>\lib\dxl\addins\dmi folder.

dmi.hlp
dmi.idx
dmi.inc
runsim.dxl
selblk.dxl

Replace any existing versions of these files.
4 Open the <doors_install_dir>\lib\dxl\startup.dxl file. In the user-defined files

section, add the following include statement:

#include <addins/dmi/dmi.inc>

If you upgrade from Version 7.1 to a later version of the DOORS software, perform these
additional steps:

a In your DOORS installation folder, navigate to the ...\lib\dxl\startupFiles subfolder.
b In a text editor, open the copiedFromDoors7.dxl file.
c Add // before this line to comment it out:

#include <addins/dmi/dmi.inc>
d Save and close the file.

7 Requirements Traceability with IBM Rational DOORS

7-2

5 Start the DOORS and MATLAB software.
6 Run the setup script using the following MATLAB command.

rmi setup

Diagnose and Fix DXL Errors
If you try to synchronize your Simulink model to a DOORS project, you might see the following errors:

-E- DXL: <Line:2> incorrectly concatenated tokens
-E- DXL: <Line:2> undeclared variable (dmiRefreshModule)
-I- DXL: all done with 2 errors and 0 warnings

If you see these errors, exit the DOORS software, rerun the steps in “Configure RMI for Interaction
with Microsoft Office and IBMRational DOORS” on page 5-2, and restart the DOORS software.

 Configure Requirements Management Interface for IBM Rational DOORS Software

7-3

Link with Requirements in DOORS Next Generation Project
IBM® Rational® DOORS® Next Generation (DNG) is a requiremets management tool for IBM
Rational Jazz platform. Linking file-based MBD artifacts (Simulink blocks, Test Cases, Data Dictionary
entries) with items managed by shared server and accessed via web client requires certain
configurtion steps before you can create new links. This example provides a step-by-step
demonstration of DNG integration feature in Simulink Requirements.

The Hard Way: Direct Links between Simulink and DNG

You can link directly with DNG artifacts, using the Link to Selected Item(s) in DNG context menu
shortcut in Requirements menu. This requires considerable overhead, because you access DNG
using the web browser client, and links require notification about which one is the "selected item".
The following several sections of this example show you how to set up your environment for direct
linking with DNG.

Server-side configuration

Copy the Jazz server dngsllink_config subfolder in MATLAB_INSTALL_DIR/toolbox/
slrequirements/slrequirements/resources/ into the DNG server's custom extensions folder.
The location of custom extensions folder depends on the particular Jazz server version:

For example, if you are running Jazz server version 6.0.6, your extensions folder may be here:

C:\Program Files\IBM\JazzTeamServer_6.0.6\server\liberty\servers\clm\dropins
\war\extensions

You may also need to "enable dropins" in DNG server configuration. Please see the DNG instructions
for details:

https://jazz.net/wiki/bin/view/Main/RMExtensionsHostingGuide605

You need to edit server.xml file in the C:\[JAZZ_INSTALL_DIR]\server\liberty\servers
\clm folder.

1. Open this file in a text editor, and locate this line:

<applicationMonitor dropinsEnabled='false' pollingRate='10s'
updateTrigger='mbean'/>

2. change dropinsEnabled to 'true'.

3. Restart the server. Below is the screenshot from IBM's instruction:

7 Requirements Traceability with IBM Rational DOORS

7-4

https://jazz.net/wiki/bin/view/Main/RMExtensionsHostingGuide605

Client Browser Configuration

Once dngsllink_config custom extension is available on your DNG server, each user interested in
linking with DNG needs to add this custom widget to the Mini Dashboard in DNG client browser.
After logging into DNG:

1. In Mini Dashboard, click the Add Widget button:

Custom gadgets menu will open

2. Click Add OpenSocial Gadget:

 Link with Requirements in DOORS Next Generation Project

7-5

3. Specify the URL that matches the location of Simulink Requirements widget code on your server.
For example:

https://JAZZSERVERNAME:9443/extensions/dngsllink_config/dngsllink_config.xml:

4. Click Add Widget. Your Mini Dashboard displays the Simulink Requirements widget:

7 Requirements Traceability with IBM Rational DOORS

7-6

Configuring MATLAB session

Use the slreq.dngConfigure commad to prepare your MATLAB session for linking with DNG.
Follow the prompts and provide the requested values. The server URL, port number, and username is
stored in your personal user preferences. However, you have to enter the DNG password each time.

1. When prompted, enter your DNG server domain name and the port number. If you do not see any
port number displayed in the address bar of your system browser when viewing DNG pages, enter the
default value of "443".

2. Enter your DNG user name, which may be different from your computer login user name:

 Link with Requirements in DOORS Next Generation Project

7-7

3. When prompted, enter your DNG password and press Enter. After connection to the server, the list
of available DNG projects is retrived.

4. Select the project and configuration stream. It is normal to see some warnings in MATLAB's
command window when establishing connection with DNG. The feature will operate, unless there are
errors.

5. A browser-to-localhost connection test runs automatically. This communication channel is required
for your MATLAB® session to receive messages when you interact with DNG in system browser. A
popup indicates that you are ready for linking:

6. If you do not see the confirmation message as shown above, it is possible that your system browser
is blocking HTTPS connections to localhost. To resolve this, allow the connection. The exact steps
depend on your browser. For example:

7 Requirements Traceability with IBM Rational DOORS

7-8

In this case, click Advanced and then click the hyperlink to allow the connection:

 Link with Requirements in DOORS Next Generation Project

7-9

When you get a confirmation popup, it confirms that your browser instance can communicate with
HTTPS listeners on your machine. It is best to reuse this same browser widnow for your DNG session,
when linking with Simulink Requirements.

7. To test your browser without rerunning slreq.dngConfigure procedure, paste the following
URL into your broser's address bar: https://localhost:31515/matlab/oslc/inboundTest

One-way Links from MATLAB/Simulink to DNG

In DNG, open Show artifacts view for the requirements collection of interest, and select the
checkbox for the item you want to link with. You will notice that the Simulink Requirements widget
is updated to confirm the ID and label of the selected item. This information is sent to MATLAB when
you interact with DNG item checkboxes.

In Simulink, right-click a block you want to link from, then select Link to Selected Item(s) in DNG
under Requirements context menu. It make take a few secconds for MATLAB to retrieve additional
data from DNG and create the link.

7 Requirements Traceability with IBM Rational DOORS

7-10

https://localhost:31515/matlab/oslc/inboundTest

Click the same block again to see the new link at the top of Requirements submenu. Click the link
label to navigate from Simulink to DNG:

Note: if you do not see the Link to Selected Item(s) in DNG shortcut in the Requirements context
menu, you may need to enable DOORS linking option in Selection Linking tab of Requirements
Settings dialog:

 Link with Requirements in DOORS Next Generation Project

7-11

Alternatively, you can control this setting via the command-line API:

rmipref('SelectionLinkDoors',true);

Reviewing MATLAB/Simulink Links from the DNG Side

DNG integration feature in Simulink Requirements allows you to query MATLAB/Simulink links from
DNG context. When you select an item from the artifacts list in DNG page, the Simulink
Requirements widget displays information about the selected item, and provides a hyperlink for
querying links as stored in Simulink Requirements. Click Query Links from SL to get a popup with
the list of incoming links for the selected DNG item.

7 Requirements Traceability with IBM Rational DOORS

7-12

One should keep in mind that these links cannot be discovered when MATLAB is not running, or when
the corresponding data files are not loaded on Simulink side. For example, the link we created above
is stored in .slmx file for the linked Simulink model. If this .slmx file is not loaded in the current

 Link with Requirements in DOORS Next Generation Project

7-13

MATLAB/Simulink session, no links will be reported in the browser popup. When relying on Query
Links from SL to review links, it is important to ensure that all related linked artifacts on MATLAB/
Simulink side are loaded in the current MATLAB session, and browser-to-MATLAB communication is
allowed by the web browser. You can review the list of loaded Link Sets by switching the
Requirements Editor into the Links View (more on this below).

Store Links in DNG for Two-Way Traceability

If you prefer to always find your MATLAB/Simulink links in DNG context, independent from whether
Simulink is running or whether the linked MBD artifacts are loaded, you have an option of truly bi-
directional linking. Re-open the Requirements Settings dialog to the Selection Linking tab and
enable the Modify destination for bi-directional linking checkbox.

Alternatively, you can use the command-line API rmipref('BiDirectionalLinking',true) to
toggle the option. Once bi-directional linking is enabled, each new link you create will not only add an
entry in the Simulink Requirements Link Set, but will also insert an External Web Link from DNG,
which you can see in the Links panel for the linked DNG item. You can use the hyperlinks in the
Links pane to navigate from DNG item to linked objects in MATLAB/Simulink.

7 Requirements Traceability with IBM Rational DOORS

7-14

When enabling Modify destination for bi-directional linking option in Requirements Settings:

1. Every DNG user will see these links when working with same version of this DNG project, even if
they do not use Simulink or do not have access to linked MBD artifacts.

2. Navigation from DNG will fail, unless MATLAB is running, and linked artifact is either already
loaded or can be found on MATLAB path.

3. Links inserted into DNG by Simulink Requirements do not synchronize automatically. If you delete
a link on Simulink side, links in DNG still exists. You need to remove these manually.

4. These links behave as shared. For example, if Simulink user A linked a DNG requirement to a block
in his Simulink model, and user B linked the same DNG requirement with a different block in same or
some other Simulink model, both users will see both links, and both links will navigate to the

 Link with Requirements in DOORS Next Generation Project

7-15

corresponding linked block, as long as the MATLAB/Simulink end of the link exists in both user's
sessions.

rmipref('BiDirectionalLinking', true);

Improved Integration with DOORS Next Generation

As can be seen from the above, both 1-way and 2-way direct linking solutions have disadvantages:

• direct linking depends on your ability to modify the DNG server configuration and install the
custom Simulink Requirements gadget,

• direct linking requires that you allow HTTPS communication between your system browser and
the local MATLAB process, which could be considered a security risk when using same browser
for external webpages,

• 1-way links are difficult to discover from DNG side, and impose strict requirements on Simulink
session state for links to become visible on DNG side,

• 2-way links may become difficult to manage in large multi-user projects or when switching
between DNG streams and changesets,

• you cannot control the Type of links from DNG to MATLAB/Simulink, the links are always of
generic "Link To" type,

• built-in analysis in Simulink Requirements product cannot be applied to direct links.

To resolve these limitations and to bypass most of the complications, Simulink Requirements offiers
an entirely different workflow option: you can cache a subset of DNG requirements into an internally
managed Simulink Requirements Set, then perform all linking and analysis in Simulink Requirements
environment as you would do with the usual internally managed or imported entries.

You will not be able to edit DNG contents locally, and you will not immediately see the updates when
the sourced requirements are updated on the server, but you get the advantage of native linking
support between Simulink artifacts without "dirtying" the server side, and you can use all the built-in
analysis capabilities of Simulink Requirements product, including implementation and verification
status, as well as change impact detection and management.

Capture DNG Collections into Simulink Requirements Set

In the Requirements Editor, click Import in the main manu:

7 Requirements Traceability with IBM Rational DOORS

7-16

Select "IBM DOORS Next Generation" in Document type selector:

As before, you will be prompted for the DNG login password, and possibly for the DNG server address
and login name, if this is your initial connection for the current MATLAB session.

Document location selector will populate with names of all DNG project available on the specified
server. Once you select the Project to import from, additional option controls will appear:

 Link with Requirements in DOORS Next Generation Project

7-17

Two different modes are supported for capturing DNG contents into Simulink Requirements. You can
import the specified module, including the herarchical relationships between DNG requirements, or
you can switch into the Filter by query mode, which produces a flat list of matched requirements.

7 Requirements Traceability with IBM Rational DOORS

7-18

When using the Filter by query option, in most cases, you will not need to type the query expression
manually, but use the Query Builder dialog to configure the filter:

 Link with Requirements in DOORS Next Generation Project

7-19

In both cases you get a top-level Import node with the ID that matches the name of your DNG project.
The Summary text of the Import node will indicate the parameters used when capturing data from
DNG. You can now work with the imported items as you would with the usual entries in Simulink
Requirements:

• create links with related MBD artifacts and use all the built-in analysis capabilities.
• navigate to the original requirements in DNG by clicking the Show in Document button,
• refresh the captured content using the Update from Server button,
• when you save to a .slreqx file, the links are saved to a corresponding .slmx file.

7 Requirements Traceability with IBM Rational DOORS

7-20

The one essencial difference, however, is that you cannot unlock and modify the imported
requirements: all the needed updates should happen on the server side. You then use the Re-run
query button for the Import node (or the Update from Server button for a single requirement) to
pull-in updates from the server.

 Link with Requirements in DOORS Next Generation Project

7-21

Linking with Captured DNG References

Now that you have captured DNG requirements collection of interest into a Requirement Set and
saved it to .slreqx file, you can easily established traceability between Requirements and desing,
then manage your Link Sets together with the rest of MBD artifacts, without affectig other users of
sourced requirements on DNG server. For example, you can switch your Simulink design model into
Requirements perspective view, then open the imported set of DNG requirements in requirements
browser, and create links by drag-drop between the requirements browser and the blocks in your
Simulink diagram. You will see linked blocks highlighted together with linked DNG references in the
requirements browser.

7 Requirements Traceability with IBM Rational DOORS

7-22

Reviewing and Analyzing Traceability Data

As with links to internally-managed requirements, you can switch into the Links view to access more
details about links, and to edit link properties such as Type, Description, Rationale, keywords, and
Comments.

As with all other Simulink Requirements links, you enable display of Implementation and Verification
status to check which requirements lack coverage, and which tests need to be rerun or updated.

When DNG requiremets on server are updated or removed, you perform the automated update of
captured requirements subsets in Simulink Requirements, and you check the Links View for flagged
stale or broken links, to quickly identify the needed design or testing changes.

 Link with Requirements in DOORS Next Generation Project

7-23

7 Requirements Traceability with IBM Rational DOORS

7-24

Requirements Traceability with IBM Rational DOORS Next
Generation

You can link and trace Simulink model elements to requirements in IBM Rational DOORS Next
Generation. Before you begin, configure IBM Rational DOORS Next Generation for communication
with MATLAB by following the instructions in “Install the Simulink Requirements Widget in IBM
Rational DOORS Next Generation” on page 5-3. Enable bidirectional requirements traceability with
IBM Rational DOORS Next Generation:

1 In the Apps tab, click Requirements Manager. In the Requirements tab, select Link Settings
> Linking Options.

2 Switch to the Selection Linking tab and select DOORS in the Enabled applications field.
3 Select Modify destination for bidirectional linking.

Link to Requirements in IBM Rational DOORS Next Generation
To link and trace your Simulink model elements to requirements in IBM Rational DOORS Next
Generation, use any of these workflows:

• “Link to Requirements by Using the Outgoing Links Editor Dialog Box” on page 7-25
• “Link to Selected Requirements in a Project by Using the Simulink Context Menu” on page 7-25

if you have installed the Simulink Requirements widget in IBM Rational DOORS Next
Generation.

• “Link to the Requirements in a Project by Using the Numeric ID” on page 7-26 if you cannot use
either of the two options.

Link to Requirements by Using the Outgoing Links Editor Dialog Box

1 Right-click the Simulink model element to which you want to link IBM Rational DOORS Next
Generation requirements.

2 Select Requirements > Open Outgoing Links dialog.
3 In the Outgoing Links dialog box, click New and select OSLC Resource as the Document

type.
4 Click Browse.
5 Enter your IBM Rational DOORS Next Generation login credentials. From the drop-down list,

select the active project name in IBM Rational DOORS Next Generation.
6 Switch to the Document Index tab and select the requirements that you want to link to from the

list of requirements. To create the link, click OK.

Link to Selected Requirements in a Project by Using the Simulink Context Menu

Install the Simulink Requirements widget in IBM Rational DOORS Next Generation. For more
information, see “Install the Simulink Requirements Widget in IBM Rational DOORS Next
Generation” on page 5-3

1 In IBM Rational DOORS Next Generation, open the Mini Dashboard and pin it to the screen.
2 Switch to the Browse Artifacts view.
3 Select the requirements that you want to link to by selecting the check box next to the

requirement.

The requirements that you select for linking are displayed in the Simulink Requirements
widget in the Mini Dashboard.

 Requirements Traceability with IBM Rational DOORS Next Generation

7-25

4 Right-click the Simulink model element to which you want to link IBM Rational DOORS Next
Generation requirements.

5 Establish links to the requirements by selecting Requirements > Link to Current Item in
DNG.

Click List Projects in the dialog box that appears and select the requirements from within IBM
Rational DOORS Next Generation.

Link to the Requirements in a Project by Using the Numeric ID

Use this option if you are unable to link to requirements by using the Outgoing Links dialog box or by
using the Simulink context menu.

1 Right-click the Simulink model to which you want to link IBM Rational DOORS Next Generation
requirements.

2 Select Requirements > Link to Current Item in DNG.
3 Click Manual entry in the dialog box that appears and enter the numeric ID for the link target.

Establish links to the requirements by clicking OK.

Navigate to Requirements from Simulink
Right-click the Simulink model element that requirements have been linked to. Select Requirements
and navigate to the corresponding requirement in IBM Rational DOORS Next Generation by clicking
the navigation shortcut at the top of the menu.

Work with IBM Rational DOORS Next Generation Projects with
Configuration Management Enabled
Projects with configuration management enabled in IBM Rational DOORS Next Generation support
multiple branches called streams and changesets. Changesets are akin to shared development
branches that can later be merged with the parent main stream. Simulink Requirements enables you
to update the outgoing link destination for an existing link in Simulink to the same requirement in a
different stream or changeset.

You can select the IBM Rational DOORS Next Generation Project and the configuration stream or
changeset you want to work with. At the MATLAB command prompt, enter:

oslc.configure

The Simulink Requirements widget displays information about the current configuration stream
context you work with in Simulink Requirements. The widget indicates if there is a mismatch between
the active configuration stream contexts in Simulink Requirements and in IBM Rational DOORS Next
Generation by highlighting the active configuration stream context in Simulink Requirements.

7 Requirements Traceability with IBM Rational DOORS

7-26

To resolve the mismatch, click the highlighted text in the widget. Click Update in the DNG
Configuration Context Mismatch dialog box to update the configuration stream context in
Simulink Requirements to be consistent with the current configuration stream context in IBM
Rational DOORS Next Generation. Alternatively, you can change the active configuration stream in
IBM Rational DOORS Next Generation.

 Requirements Traceability with IBM Rational DOORS Next Generation

7-27

Navigate to Requirements in IBM Rational DOORS Databases
from Simulink

Enable Linking from IBM Rational DOORS Databases to Simulink
Objects
By default, the RMI does not insert navigation objects into requirements documents. If you want to
insert a navigation object into the requirements document when you create a link from a Simulink
object to a requirement, you must change the RMI’s settings. The following tutorial uses the
sldemo_fuelsys example model to illustrate how to do this.

To enable linking from the DOORS database to the example model:

1 Open the model:

sldemo_fuelsys

Note You can modify requirements settings in the Requirements Settings dialog box. These
settings are global and not specific to open models. Changes you make apply not only to open
models, but also persist for models you subsequently open. For more information about these
settings, see “Requirements Settings” on page 5-10.

2 In the Apps tab, click Requirements Manager. In the Requirements tab, select Link Settings
> Linking Options.

The Requirements Settings dialog box opens.
3 Click the Selection Linking tab.
4 Select Modify destination for bidirectional linking.

When you enable this option, every time you create a selection-based link from a Simulink object
to a requirement, the RMI inserts navigation objects at the designated location. Using this option
requires write access to the requirements document.

5 Select Store absolute path to model file.

For this exercise, you save a copy of the example model on the MATLAB path.

If you add requirements to a model that is not on the MATLAB path, you must select this option
to enable linking from your requirements document to your model.

6 In the Apply this keyword to new links field, enter one or more user tags to apply to the links
that you create.

For more information about user tags, see “User Tags and Requirements Filtering” on page 5-11.
7 Click Close to close the Requirements Settings dialog box. Keep the sldemo_fuelsys model

open.

Insert Navigation Objects into IBM Rational DOORS Requirements
When you enable Modify destination for bidirectional linking as described in “Enable Linking
from IBM Rational DOORS Databases to Simulink Objects” on page 7-28, the RMI can insert a
navigation object into both the Simulink object and its associated DOORS requirement. This tutorial

7 Requirements Traceability with IBM Rational DOORS

7-28

uses the sldemo_fuelsys example model to illustrate how to do this. For this tutorial, you also need
a DOORS formal module that contains requirements.

1 Rename the sldemo_fuelsys model and save it in a writable folder on the MATLAB path.
2 Start the DOORS software and open a formal module that contains requirements.
3 Select the requirement that you want to link to by left-clicking that requirement in the DOORS

database.
4 In the sldemo_fuelsys model, select an object in the model.

This example creates a requirement from the fuel_rate_control subsystem.
5 Right-click the Simulink object (in this case, the fuel_rate_control subsystem) and select

Requirements > Link to Selection in DOORS.

The RMI creates the link for the fuel_rate_control subsystem. It also inserts a navigation
object into the DOORS formal module—a Simulink reference object () that enables you to
navigate from the requirement to the model.

6 Close the model.

Note When you navigate to a DOORS requirement from outside the software, the DOORS module
opens in read-only mode. If you want to modify the DOORS module, open the module using DOORS
software.

Insert Navigation Objects to Multiple Simulink Objects

If you have several Simulink objects that correspond to one requirement, you can link them all to that
requirement with a single navigation object. This eliminates the need to insert multiple navigation
objects for a single requirement. The Simulink objects must be available in the same model diagram
or Stateflow chart.

The workflow for linking multiple Simulink objects to one DOORS requirement is as follows:

1 Make sure that you have enabled Modify destination for bidirectional linking.
2 Select the DOORS requirement to link to.
3 Select the Simulink objects that need to link to that requirement.
4 Right-click one of the objects and select Requirements Traceability > Link to Selection in

DOORS.

A single navigation object is inserted at the selected requirement.
5 Double-click the navigation object in DOORS to highlight the Simulink objects that are linked to

that requirement.

 Navigate to Requirements in IBM Rational DOORS Databases from Simulink

7-29

Navigate Between IBM Rational DOORS Requirement and Model
Object
In “Insert Navigation Objects into IBM Rational DOORS Requirements” on page 7-28, you created a
link between a DOORS requirement and the fuel_rate_control subsystem in the
sldemo_fuelsys model. Navigate the links in both directions:

1 With the sldemo_fuelsys model closed, go to the DOORS requirement in the formal module.
2 Left-click the Simulink reference object that you inserted to select it.
3 Select MATLAB > Select item.

Your version of the sldemo_fuelsys model opens, with the fuel_rate_control subsystem
highlighted.

4 Log in to the DOORS software.
5 Navigate from the model to the DOORS requirement. In the Model Editor, right-click the

fuel_rate_control subsystem and select Requirements > 1. “<requirement name>”
where <requirement name> is the name of the DOORS requirement that you created.

The DOORS formal module opens with the requirement object and its child objects highlighted in
red.

Why Add Navigation Objects to IBM Rational DOORS Requirements?
IBM Rational DOORS software is a requirements management application that you use to capture,
track, and manage requirements. The Requirements Management Interface (RMI) allows you to link
Simulink objects to requirements managed by external applications, including the DOORS software.

7 Requirements Traceability with IBM Rational DOORS

7-30

When you create a link from a Simulink object to a DOORS requirement, the RMI stores the link data
in Simulink. Using this link, you can navigate from the Simulink object to its associated requirement.

You can also configure the RMI to insert a navigation object in the DOORS database. This navigation
object serves as a link from the DOORS requirement to its associated Simulink object.

To insert navigation objects into a DOORS database, you must have write access to the DOORS
database.

Customize IBM Rational DOORS Navigation Objects
If the RMI is configured to modify the destination for bidirectional linking as described in “Enable
Linking from IBM Rational DOORS Databases to Simulink Objects” on page 7-28, the RMI can insert
a navigation object into your requirements document. This object looks like the icon for the Simulink

software:

Note In IBM Rational DOORS requirements documents, clicking a navigation object does not
navigate back to your Simulink object. Select MATLAB > Select object to find the Simulink object
that contains the requirements link.

To use an icon of your choosing for the navigation object:

1 In the Apps tab, click Requirements Manager. In the Requirements tab, select Link Settings
> Linking Options.

2 Select the Selection Linking tab.
3 Select Modify destination for bidirectional linking.

Selecting this option enables the Use custom bitmap for navigation controls in documents
option.

4 Select Use custom bitmap for navigation controls in documents.
5 Click Browse to locate the file you want to use for the navigation objects.

For best results, use an icon file (.ico) or a small (16×16 or 32×32) bitmap image (.bmp) file for
the navigation object. Other types of image files might give unpredictable results.

6 Select the desired file to use for navigation objects and click Open.
7 Close the Requirements Settings dialog box.

The next time you insert a navigation object into a requirements document, the RMI uses the file you
selected.

Tip You can specify a custom template for labels of requirements links to DOORS objects. For more
information, see the rmi command.

 Navigate to Requirements in IBM Rational DOORS Databases from Simulink

7-31

Synchronize Simulink Models with IBM Rational DOORS
Databases by using Surrogate Modules

Synchronize a Simulink Model to Create a Surrogate Module
The first time that you synchronize your model with the DOORS software, the DOORS software
creates a surrogate module.

In this tutorial, you synchronize the sf_car model with the DOORS software.

Note Before you begin, make sure you know how to create links from a Simulink model object to a
requirement in a DOORS database.

1 To create a surrogate module, start the DOORS software and open a project. If the DOORS
software is not already running, start the DOORS software and open a project.

2 Open the sf_car model.
3 Rename the model to sf_car_doors, and save the model in a writable folder.
4 Create links to a DOORS formal module from two objects in sf_car_doors:

• The transmission subsystem
• The engine torque block inside the Engine subsystem

5 Save the changes to the model.
6 In the Simulink Editor, select Analysis > Requirements > Synchronize with DOORS.

The DOORS synchronization settings dialog box opens.
7 For this tutorial, accept the default synchronization options.

The default option under Extra mapping additionally to objects with links, None, creates
objects in the surrogate module only for the model and any model objects with links to DOORS
requirements.

Note For more information about the synchronization options, see “Customize IBM Rational
DOORS Synchronization” on page 7-36.

8 Click Synchronize to create and open a surrogate module for all DOORS requirements that have
links to objects in the sf_car_doors model.

After synchronization with the None option, the surrogate module, a formal module named
sf_car_doors, contains:

• A top-level object for the model (sf_car_doors)
• Objects that represent model objects with links to DOORS requirements (transmission, engine

torque), and their parent objects (Engine).

7 Requirements Traceability with IBM Rational DOORS

7-32

9 Save the surrogate module and the model.

Create Links Between Surrogate Module and Formal Module in an IBM
Rational DOORS Database
The surrogate module is the interface between the DOORS formal module that contains your
requirements and the Simulink model. To establish links between the surrogate module and the
requirements module, copy the link information from the model to the surrogate module:

1 Open the sf_car_doors model.
2 In the Simulink Editor, select Analysis > Requirements > Synchronize with DOORS.
3 In the DOORS synchronization settings dialog box, select two options:

• Update links during synchronization
• from Simulink to DOORS.

4 Click Synchronize.

The RMI creates links from the DOORS surrogate module to the formal module. These links
correspond to links from the Simulink model to the formal module. In this example, the DOORS
software copies the links from the engine torque block and transmission subsystems to the
formal module, as indicated by the red triangles.

 Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules

7-33

Resynchronize IBM Rational DOORS Surrogate Module to Reflect
Model Changes
If you change your model after synchronization, the RMI does not display a warning message. If you
want the surrogate module to reflect changes to the Simulink model, resynchronize your model.

In this tutorial, you add a new block to the sf_car_doors model, and later delete it, resynchronizing
after each step:

1 In the sf_car_doors model, make a copy of the vehicle mph (yellow) & throttle % Scope block
and paste it into the model. The name of the new Scope block is vehicle mph (yellow) & throttle
%1.

2 Select Analysis > Requirements > Synchronize with DOORS.
3 In the DOORS synchronization settings dialog box, leave the Extra mapping additionally to

objects with links option set to Complete - All blocks, subsystems, states, and
transitions. Click Synchronize.

After the synchronization, the surrogate module includes the new block.

4 In the sf_car_doors model, delete the newly added Scope block and resynchronize.

The block that you delete appears at the bottom of the list of objects in the surrogate module. Its
entry in the Block Deleted column reads True.

7 Requirements Traceability with IBM Rational DOORS

7-34

5 Delete the copied object (vehicle mph (yellow) & throttle %1) and resynchronize the model.
6 Save the surrogate module.
7 Save the sf_car_doors model.

Navigate with the Surrogate Module
Navigate Between Requirements and the Surrogate Module in the DOORS Database

The surrogate module and the requirements in the formal module are both in the DOORS database.
When you synchronize your model, the DOORS software creates links between the surrogate module
objects and the requirements in the DOORS database.

Navigating between the requirements and the surrogate module allows you to review the
requirements that have links to the model without starting the Simulink software.

To navigate from the surrogate module transmission object to the requirement in the formal module:

1 In the surrogate module object for the transmission subsystem, right-click the right-facing red
arrow.

2 Select the requirement name.

The formal module opens, at the Transmission Requirements object.

To navigate from the requirement in the formal module to the surrogate module:

1 In the Transmission Requirements object in the formal module, right-click the left-facing orange
arrow.

 Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules

7-35

2 Select the object name.

The surrogate module for sf_car_doors opens, at the object associated with the transmission
subsystem.

Navigate Between DOORS Requirements and the Simulink Module via the Surrogate Module

You can create links that allow you to navigate from Simulink objects to DOORS requirements and
from DOORS requirements to the model. If you synchronize your model, the surrogate module serves
as an intermediary for the navigation in both directions. The surrogate module allows you to navigate
in both directions even if you remove the direct link from the model object to the DOORS formal
module.

Navigate from a Simulink Object to a Requirement via the Surrogate Module

To navigate from the transmission subsystem in the sf_car_doors model to a requirement in the
DOORS formal module:

1 In the sf_car_doors model, right-click the transmission subsystem and select Requirements
> 1. “DOORS Surrogate Item”. (The direct link to the DOORS formal module is also available.)

The surrogate module opens, at the object associated with the transmission subsystem.
2 To display the individual requirement, in the surrogate module, right-click the right-facing red

arrow and select the requirement.

The formal module opens, at Transmission Requirements.

Navigate from a Requirement to the Model via the Surrogate Module

To navigate from the Transmission Requirements requirement in the formal module to the
transmission subsystem in the sf_car_doors model:

1 In the formal module, in the Transmission Requirements object, right-click the left-facing
orange arrow.

2 Select the path to the linked surrogate object: /sf_car Project/sf_car_doors > 4. transmission.

The surrogate module opens, at the transmission object.
3 In the surrogate module, select MATLAB > Select item.

The linked object is highlighted in sf_car_doors.

Customize IBM Rational DOORS Synchronization
DOORS Synchronization Settings

When you synchronize your Simulink model with a DOORS database, you can:

• Customize the level of detail for your surrogate module.
• Update links in the surrogate module or in the model to verify the consistency of requirements

links among the model, and the surrogate and formal modules.

The DOORS synchronization settings dialog box provides the following options during
synchronization.

7 Requirements Traceability with IBM Rational DOORS

7-36

DOORS Settings Option Description
DOORS surrogate module path and name Specifies a unique DOORS path to a new or an existing

surrogate module.

For information about how the RMI resolves the path
to the requirements document, see “Document Path
Storage” on page 11-34.

Extra mapping additionally to objects with links Determines the completeness of the Simulink model
representation in the DOORS surrogate module. None
specifies synchronizing only those Simulink objects
that have linked requirements, and their parent
objects. For more information about these
synchronization options, see “Customize the Level of
Detail in Synchronization” on page 7-38.

Update links during synchronization Specifies updating any unmatched links the RMI
encounters during synchronization, as designated in
the Copy unmatched links and Delete unmatched
links options.

Copy unmatched links During synchronization, selecting the following options
has the following results:

• from Simulink to DOORS: For links between the
model and the formal module, the RMI creates
matching links between the DOORS surrogate and
formal modules.

• from DOORS to Simulink: For links between the
DOORS surrogate and formal modules, the RMI
creates matching links between the model and the
DOORS modules.

Delete unmatched links During synchronization, selecting the following options
has the following results:

• Remove unmatched in DOORS: For links
between the formal and surrogate modules, when
there is not a corresponding link between the
model and the DOORS modules, the RMI deletes
the link in DOORS.

This option is available only if you select the from
Simulink to DOORS option.

• Remove unmatched in Simulink: For links
between the model and the DOORS modules, when
there is not a corresponding link between the
formal and surrogate modules, the RMI deletes the
link from the model.

This option is available only if you select the from
DOORS to Simulink option.

 Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules

7-37

DOORS Settings Option Description
Save DOORS surrogate module After the synchronization, saves changes to the

surrogate module and updates the version of the
surrogate module in the DOORS database.

Save Simulink model (recommended) After the synchronization, saves changes to the model.
If you use a version control system, selecting this
option changes the version of the model.

Resynchronize a Model with a Different Surrogate Module

You can synchronize the same Simulink model with a new DOORS surrogate module. For example,
you might want the surrogate module to contain only objects that have requirements to DOORS,
rather than all objects in the model. In this case, you can change the synchronization options to
reduce the level of detail in the surrogate module:

1 In the DOORS synchronization settings dialog box, change the DOORS surrogate module path
and name to the path and name of the new surrogate module in the DOORS database.

2 Specify a module with either a relative path (starting with ./) or a full path (starting with /).

The software appends relative paths to the current DOORS project. Absolute paths must specify a
project and a module name.

When you synchronize a model, the RMI automatically updates the DOORS surrogate module
path and name with the actual full path. The RMI saves the unique module ID with the module.

3 If you select a new module path or if you have renamed the surrogate module, and you click
Synchronize, the Requirements: Surrogate Module Mismatch dialog box opens.

4 Click Continue to create a new surrogate module with the new path or name.

Customize the Level of Detail in Synchronization

You can customize the level of detail in a surrogate module so that the module reflects the full or
partial Simulink model hierarchy.

In “Synchronize a Simulink Model to Create a Surrogate Module” on page 7-32, you synchronized the
model with the Extra mapping additionally to objects with links option set to None. As a result,
the surrogate module contains only Simulink objects that have requirement links, and their parent
objects. Additional synchronization options, described in this section, can increase the level of
surrogate detail. Increasing the level of surrogate detail can slow down synchronization.

The Extra mapping additionally to objects with links option can have one of the following values.
Each subsequent option adds additional Simulink objects to the surrogate module. You choose None

7 Requirements Traceability with IBM Rational DOORS

7-38

to minimize the surrogate size or Complete to create a full representation of your model. The
Complete option adds all Simulink objects to the surrogate module, creating a one-to-one mapping of
the Simulink model in the surrogate module. The intermediate options provide more levels of detail.

Drop-Down List Option Description
None (Recommended for better
performance)

Maps only Simulink objects that have requirements links and their
parent objects to the surrogate module.

Minimal - Non-empty unmasked
subsystems and Stateflow charts

Adds all nonempty Stateflow charts and unmasked Simulink
subsystems to the surrogate module.

Moderate - Unmasked subsystems,
Stateflow charts, and superstates

Adds Stateflow superstates to the surrogate module.

Average - Nontrivial Simulink
blocks, Stateflow charts and
states

Adds all Stateflow charts and states and Simulink blocks, except
for trivial blocks such as ports, bus objects, and data-type
converters, to the surrogate module.

Extensive - All unmasked blocks,
subsystems, states and
transitions

Adds all unmasked blocks, subsystems, states, and transitions to
the surrogate module.

Complete - All blocks,
subsystems, states and
transitions

Copies all blocks, subsystems, states, and transitions to the
surrogate module.

Resynchronize to Include All Simulink Objects

This tutorial shows how you can include all Simulink objects in the DOORS surrogate module. Before
you start these steps, make sure you have completed the tutorials “Synchronize a Simulink Model to
Create a Surrogate Module” on page 7-32 and “Create Links Between Surrogate Module and Formal
Module in an IBM Rational DOORS Database” on page 7-33.

1 Open the sf_car_doors model that you synchronized in “Synchronize a Simulink Model to
Create a Surrogate Module” on page 7-32 and again in “Create Links Between Surrogate Module
and Formal Module in an IBM Rational DOORS Database” on page 7-33.

2 In the Simulink Editor, select Analysis > Requirements > Synchronize with DOORS.

The DOORS synchronization settings dialog box opens.
3 Resynchronize with the same surrogate module, making sure that the DOORS surrogate

module path and name specifies the surrogate module path and name that you used in
“Synchronize a Simulink Model to Create a Surrogate Module” on page 7-32.

For information about how the RMI resolves the path to the requirements document, see
“Document Path Storage” on page 11-34.

4 Update the surrogate module to include all objects in your model. To do this, under Extra
mapping additionally to objects with links, from the drop-down list, select Complete - All
blocks, subsystems, states and transitions.

5 Click Synchronize.

After synchronization, the DOORS surrogate module for the sf_car_doors model opens with
the updates. All Simulink objects and all Stateflow objects in the sf_car_doors model are now
mapped in the surrogate module.

 Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules

7-39

6 Scroll through the surrogate module. Notice that the objects with requirements (the engine
torque block and transmission subsystem) retain their links to the DOORS formal module, as
indicated by the red triangles.

7 Save the surrogate module.

Detailed Information About The Surrogate Module You Created

Notice the following information about the surrogate module that you created in “Resynchronize to
Include All Simulink Objects” on page 7-39:

• The name of the surrogate module is sf_car_doors, as you specified in the DOORS
synchronization settings dialog box.

• DOORS object headers are the names of the corresponding Simulink objects.
• The Block Type column identifies each object as a particular block type or a subsystem.
• If you delete a previously synchronized object from your Simulink model and then resynchronize,

the Block Deleted column reads true. Otherwise, it reads false.

These objects are not deleted from the surrogate module. The DOORS software retains these
surrogate module objects so that the RMI can recover these links if you later restore the model
object.

• Each Simulink object has a unique ID in the surrogate module. For example, the ID for the
surrogate module object associated with the Mux block in the preceding figure is 11.

7 Requirements Traceability with IBM Rational DOORS

7-40

• Before the complete synchronization, the surrogate module contained the transmission subsystem,
with an ID of 3. After the complete synchronization, the transmission object retains its ID (3), but
is listed farther down in the surrogate module. This order reflects the model hierarchy. The
transmission object in the surrogate module retains the red arrow that indicates that it links to a
DOORS formal module object.

Synchronization with IBM Rational DOORS Surrogate Modules
Synchronization is a user-initiated process that creates or updates a DOORS surrogate module. A
surrogate module is a DOORS formal module that is a representation of a Simulink model hierarchy.

When you synchronize a model for the first time, the DOORS software creates a surrogate module.
The surrogate module contains a representation of the model, depending on your synchronization
settings. (To learn how to customize the links and level of detail in the synchronization, see
“Customize IBM Rational DOORS Synchronization” on page 7-36.)

If you create or remove model objects or links, keep your surrogate module up to date by
resynchronizing. The updated surrogate module reflects any changes in the requirements links since
the previous synchronization.

Note The RMI and DOORS software both use the term object. In the RMI, and in this document, the
term object refers to a Simulink model or block, or to a Stateflow chart or its contents.

In the DOORS software, object refers to numbered elements in modules. The DOORS software
assigns each of these objects a unique object ID. In this document, these objects are referred to as
DOORS objects.

You use standard DOORS capabilities to navigate between the Simulink objects in the surrogate
module and requirements in other formal modules. The surrogate module facilitates navigation
between the Simulink model object and the requirements, as the following diagram illustrates.

 Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules

7-41

Advantages of Synchronizing Your Model with a Surrogate Module
Synchronizing your Simulink model with a surrogate module offers the following advantages:

• You can navigate from a requirement to a Simulink object without modifying the requirements
modules.

• You avoid cluttering your requirements modules with inserted navigation objects.
• The DOORS database contains complete information about requirements links. You can review

requirements links and verify traceability, even if the Simulink software is not running.
• You can use DOORS reporting features to analyze requirements coverage.
• You can separate the requirements tracking work from the Simulink model developers' work, as

follows:

• Systems engineers can establish requirements links to models without using the Simulink
software.

• Model developers can capture the requirements information using synchronization and store it
with the model.

• You can resynchronize a model with a new surrogate module, updating any model changes or
specifying different synchronization options.

7 Requirements Traceability with IBM Rational DOORS

7-42

Working with IBM Rational DOORS 9 Requirements
How to import, link, and update requirements from IBM Rational DOORS 9.

Setup for IBM Rational DOORS

Working with DOORS 9 is supported on Microsoft Windows®. Configure the requirements
management interface for interaction with IBM Rational DOORS by following the instructions in
“Configure RMI for Interaction with Microsoft Office and IBMRational DOORS” on page 5-2.

Overview of Workflow with DOORS

You can import requirements from DOORS into the Simulink environment, then establish traceability
from your model to DOORS requirements through the imported references. Traceability is bi-
directional. If DOORS requirements change, you can update the references in Simulink Requirements
while maintaining traceability. Additionally:

 Working with IBM Rational DOORS 9 Requirements

7-43

• You can establish traceability from MATLAB and Simulink to DOORS without modifying DOORS
Formal or Link modules.

• You can link between design, tests, and requirements without leaving the Simulink Editor.
• You can establish traceability from low-level requirements in Simulink to high-level requirements

in DOORS.
• You can identify gaps in implementation and verification using metrics in Simulink Requirements.
• Change detection and cross-domain traceability can be used to conduct change impact analysis.

If you have existing Simulink artifacts that are linked to DOORS with previous versions of the
Requirements Management Interface, update your existing links. See the Update Model Link
Destinations section in “Migrating Requirements Management Interface Data to Simulink®
Requirements™”.

Import a DOORS Module

To import a DOORS module into Simulink Requirements:

1. Log in to DOORS and open the module to import. 2. In the Requirements Editor, select File >
Import. 3. Select a DOORS module as the source document. 4. If your DOORS module includes
pictures or tables, enable the Include graphics and layout option. 5. Click Import to complete the
import process. 6. Check the results in Requirements Editor. The references should preserve the
DOORS IDs and the requirements hierarchy.

To navigate between the imported requirements references and DOORS: * Select an imported
requirements reference and click Show in document to navigate to DOORS. * Select MATLAB >
Select Item in DOORS to navigate to the imported requirements reference.

If your DOORS module has links between DOORS items, you need additional to use additional
commands to bring links into the requirements set. Also, if your DOORS module has links to Simulink
models, use link synchronization to bring the links into the requirements set. See the section
Copying Link Information from DOORS to Simulink in “Managing Requirements for Fault-
Tolerant Fuel Control System (IBM Rational DOORS)”.

Link to Your Model

You can link imported requirements to Simulink blocks by dragging items from the Requirements
Browser to items in your model. Open the Requirements Perspective in the model window by clicking
the icon at the lower right of the window and selecting the Requirements tile.

When you open the Requirements Perspective, the Links panel in the bottom right displays related
links. You can:

• Navigate to linked artifacts outside the current model.
• Delete links by pointing to the link and clicking the red cross.
• Check and modify link properties by switching to the Links View.

7 Requirements Traceability with IBM Rational DOORS

7-44

You can link imported requirements to entities such as test cases, MATLAB code, data dictionaries,
and other requirements. For more information, see “Link to Test Cases from Requirements” and
“Working with IBM Rational DOORS 9 Requirements” on page 7-43.

Update Requirements to Reflect DOORS Changes

If the source requirements in DOORS change, you can update the linked requirements in Simulink
Requirements.

• Select the top-level node that corresponds to updated DOORS module.
• Click the Update button.

Follow the steps in “Update Imported Requirements” on page 1-17.

Synchronizing Links and Navigation from DOORS

You can bring traceability data into DOORS for easier navigation from original requirements to
design and tests. To synchronize your Simulink Requirements links into DOORS:

• Switch into the Links View.
• Locate and right-click the Link Set that has new links.
• Select Update Backlinks shortcut at the bottom of context menu.

Simulink Requirements analyzes outgoing links in the Link Set and checks for incoming links from
applications that support backlinks insertion, including DOORS. * Missing links are added to the
external document. In DOORS, links appear as an outgoing External Link and correspond to
Simulink entities, such as a block name or test file in Simulink Test. * Linked documents are checked

 Working with IBM Rational DOORS 9 Requirements

7-45

for stale links, where there is no matching link from Simulink to this external requirement. * You can
delete unmatched links from the DOORS module from the prompt. * A short report dialog is displayed
on successful completion of Update Backlinks action:

After performing Update Backlinks step, review your linked requirements in DOORS module - you
should see links to MATLAB or Simulink. You may see multiple links if same requirement is linked to
multiple elements. Click the link in DOORS to navigate:

See Manage Navigation Backlinks in External Requirements Documents for general information
about managing links from external documents.

Embedded HTTP Connector

Navigation from external applications to MATLAB/Simulink relies on the built-in HTTP server in
MATLAB. Simulink Requirements will fail to insert a link in external application unless the MATLAB's
built-in HTTP server is active on the correct port number.

If you see the following error popup when performing Update Backinks action, this indicates that
HTTP server is not in the correct state:

7 Requirements Traceability with IBM Rational DOORS

7-46

Use the connector.port command-line API to check the status of HTTP server, and use
rmi('httpLink') API to activate the server if connector.port command returns 0.

Update Backlinks feature requires that HTTP server is activated for port 31415. If
connector.port command returns a higher number, this indicates that the desired port number
was taken by some other process when this instance of MATLAB was started. You will need to:

• Save your work and quit all instances of MATLAB.
• Restart only one instance of MATLAB.
• Check HTTP server status by running connector.port command.
• If you get 0, rerun rmi('httpLink') command.
• Re-open your MBD artifacts and retry Update Backlinks procedure.

Tracing to DOORS Module Baseline

At some point after linking MBD artifacts with requirements in DOORS, you may have created
Baselines for linked modules. By default, your links stored in Simulink Requirements will still
navigate to the current version of the linked modules. If you want to lock your design version to a
baseline version of requirements, Simulink Requirements allows you to specify a Baseline number for
each DOORS module you are linking with. You can choose to configure the preferred DOORS baseline
numbers for all linked artifacts in your current MATLAB session, or you can specify a different
DOORS baseline number, depending on MBD artifacts.

• slreq.cmConfigureVersion is the command-line API that you use to specify your preferred
DOORS baseline numbers.

• Use slreq.cmGetVersion command to check the configured DOORS baseline number for a
given DOORS module.

• If you later created next version baselines for these same modules, and if you want navigation of
previously stored links to target the later baseline, you rerun slreq.cmConfigureVersion
command to specify the updated baseline number.

• Per-artifact values are stored with the corresponding Link Sets and will affect navigation for all
users of same Link Set files.

• Global (session-scope) assignments are stored in user preferences. Your next MATLAB session on
the same installation remembers your previously configured baseline numbers. If you shared your
work with other users, each user will need to reenter the same preferred baseline numbers. If
needed, you can include the required configuration commands in your MATLAB startup script or
in your Simulink Project startup script.

 Working with IBM Rational DOORS 9 Requirements

7-47

Repair Links to Previously Imported References After Module Prefix Changed in DOORS

When requirements change in DOORS, you perform the Update action to bring updated DOORS
contents into previously imported Requirements Set. The process relies on matching DOORS object
IDs with Custom IDs of previously imported items to determine which existing references need
update, and which DOORS objects are new and require creation of new references in Simulink
Requirements Set. Also, when updates received from DOORS do not include any Custom ID that is
present in Simulink Requirement Set, the corresponding item is assumed to be deleted in DOORS,
and will be cleaned-up from Simulink Requirements Set. With this comes the following danger: if
DOORS user has modified the module prefix in DOORS before performing the Update for Simulink
Requirements Set, none of the existing Custom IDs will match, because DOORS module prefix is a
part of ID, and all IDs known on Simulink Requirements side are based on the old prefix. Update
process will remove all existing references and will then create new ones with Custom IDs that
correspond to updated prefix in DOORS. If previously imported references where linked with design
aftifacts on Simulink side, all the links will be broken, because the originally linked references no
longer exist. For example, if the original module prefix in DOORS was "KKK" and this was changed to
"QQQ", you will see QQQ-based IDs in the Requirements Browser after performing Update,

... but the links will still point to KKK-based items as destinations. You will see orange warning
triangles on all the links that got broken:

7 Requirements Traceability with IBM Rational DOORS

7-48

To recover from this situation you need to: # identify the original DOORS IDs in LinkSet data, #
construct the expected updated DOORS IDs based on your knowledge of the original and current
module prefix, # rely on reconsturcted IDs to locate the matching Requirement Set entry for each
broken link destination, # update each broken link to connect with the updated reference in
Requirement set.

If an older copy of Requirement Set file is still available, you can collect the SID->CustomID mapping
from it. But if you only have the updated version of the Requirement Set, and the links are already
broken, you may be able to pull old DOORS IDs from the stored link labels (from link.Description
values).

The following script demonstrates accomplishing this task for the case when all stored
link.Description labels start with the DOORS ID. In our example the labels look like "KKK123:
some text", and we know that item that used to have DOORS ID "KKK123" now has DOORS ID
"QQQ123".

 Working with IBM Rational DOORS 9 Requirements

7-49

Run this script with four input arguments: LinkSet name, ReqSet name, old prefix, new prefix:

7 Requirements Traceability with IBM Rational DOORS

7-50

Now all the links are resolved and labels are updated correctly:

See Also

Related Examples
• “IBM Rational DOORS Traceability”
• “Managing Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)”

 Working with IBM Rational DOORS 9 Requirements

7-51

Simulink Traceability Between Model
Objects

• “Link Model Objects” on page 8-2
• “Link Test Cases to Requirements Documents” on page 8-3
• “Link Simulink Data Dictionary Entries to Requirements” on page 8-7
• “Link Signal Builder Blocks to Requirements and Simulink Model Objects” on page 8-8
• “Requirements Links for Library Blocks and Reference Blocks” on page 8-11
• “Navigate to Requirements from Model” on page 8-15

8

Link Model Objects

Link Objects in the Same Model
You can create a requirements link from one model object to another model object:

1 Right-click the link destination model object and select Requirements > Select for Linking
with Simulink.

2 Right-click the link source model object and select Requirements > Add Link to Selected
Object.

3 Right-click the link source model object again and select Requirements. The new link appears
at the top of the Requirements submenu.

Link Objects in Different Models
You can create links between objects in related models. This example shows how to link model objects
in slvnvdemo_powerwindow_controller and slvnvdemo_powerwindow.

1 Open the slvnvdemo_powerwindow_controller and slvnvdemo_powerwindow models.
2 In the slvnvdemo_powerwindow model window, double-click the

power_window_control_system subsystem. The power_window_control_system
subsystem opens.

3 In the slvnvdemo_powerwindow/power_window_control_system subsystem window, right-
click the control subsystem. Select Requirements > Select for Linking with Simulink.

4 In the slvnvdemo_powerwindow_controller model window, right-click the control
subsystem. Select Requirements > Add Link to Selected Object.

5 Right-click the slvnvdemo_powerwindow_controller/control subsystem and select
Requirements. The new RMI link appears at the top of the Requirements submenu.

6 To verify that the links were created, in the Apps tab, click Requirements Manager. In the
Requirements tab, click Highlight Links.

The blocks with requirements links are highlighted.
7 Close the slvnvdemo_powerwindow_controller and slvnvdemo_powerwindow models.

8 Simulink Traceability Between Model Objects

8-2

Link Test Cases to Requirements Documents
Since requirements specify behavior in response to particular conditions, you can build test cases
(test inputs, expected outputs, and assessments) from the model requirements. Test cases reproduce
specific conditions using test inputs, and assess the actual model output against the expected
outputs. As you develop the model, build test files that check system behavior and link them to
corresponding requirements. By defining these test cases in test files, you can periodically check your
model and archive results to demonstrate model stability.

Establish Requirements Traceability for Testing
If you have a Simulink Test and a Simulink Requirements license, you can link requirements to test
harnesses, test sequences, and test cases. Before adding links, review “Supported Requirements
Document Types” on page 5-8.

Requirements Traceability for Test Harnesses

When you edit requirements links to the component under test, the links immediately synchronize
between the test harness and the main model. Other changes to the component under test, such as
adding a block, synchronize when you close the test harness. If you add a block to the component
under test, close and reopen the harness to update the main model before adding a requirement link.

To view items with requirements links, on the Apps tab, under Model Verification, Validation, and

Test, click Requirements Manager. In the Requirements tab, click Highlight Links .

.

Requirements Traceability for Test Sequences

In test sequences, you can link to test steps. To create a link, first find the model item, test case, or
location in the document you want to link to. Right-click the test step, select Requirements, and add
a link or open the link editor.

To highlight or remove the highlighting from test steps that have requirements links, toggle the

requirements links highlighting button in the Test Sequence Editor toolstrip. Highlighting test
steps also highlights the model block diagram.

Requirements Traceability for Test Cases

If you use many test cases with a single test harness, link to each specific test case to distinguish
which blocks and test steps apply to it. To link test steps or test harness blocks to test cases,

1 Open the test case in the Test Manager.
2 Highlight the test case in the test browser.
3 Right-click the block or test step, and select Requirements > Link to Current Test Case.

Requirements Traceability Example

This example demonstrates adding requirements links to a test harness and test sequence. The model
is a component of an autopilot roll control system. This example requires Simulink Test and Simulink
Requirements.

 Link Test Cases to Requirements Documents

8-3

1 Open the test file, the model, and the harness.

open AutopilotTestFile.mldatx,
open_system RollAutopilotMdlRef,
sltest.harness.open('RollAutopilotMdlRef/Roll Reference',...
'RollReference_Requirement1_3')

2 In the test harness, on the Apps tab, under Model Verification, Validation, and Test, click

Requirements Manager. In the Requirements tab, click Highlight Links .

The test harness highlights the Test Sequence block, component under test, and Test Assessment
block.

3 Add traceability to the Discrete Derivative block.

a Right-click the Discrete Derivative block and select Requirements > Open Outgoing
Links dialog.

b In the Requirements tab, click New.
c Enter the following to establish the link:

• Description: DD link
• Document type: Text file
• Document: RollAutopilotRequirements.txt
• Location: 1.3 Roll Hold Reference

8 Simulink Traceability Between Model Objects

8-4

d Click OK. The Discrete Derivative block highlights.
4 To trace to the requirements document, right-click the Discrete Derivative block, and select

Requirements > DD Link. The requirements document opens in the editor and highlights the
linked text.

5 Open the Test Sequence block. Add a requirements link that links the InitializeTest step to
the test case.

a In the Test Manager, highlight Requirement 1.3 Test in the test browser.
b Right-click the InitializeTest step in the Test Sequence Editor. Select Requirements >

Link to Current Test Case.

 Link Test Cases to Requirements Documents

8-5

When the requirements link is added, the Test Sequence Editor highlights the step.

See Also
“Requirements-Based Testing for Model Development” (Simulink Test) | “Link to Test Cases from
Requirements”

8 Simulink Traceability Between Model Objects

8-6

Link Simulink Data Dictionary Entries to Requirements
You can create requirements traceability links for entries in Simulink data dictionaries. The process is
similar to linking for other model objects. In the Model Explorer, right-click a data dictionary entry,
select Requirements, and choose one of the selection-based linking options. You can also use the
Link Editor.

This example demonstrates linking to a data dictionary entry.

1 Enter sldemo_fuelsys_dd_controller at the command line to open
sldemo_fuelsys_dd_controller.

2 Open the linked data dictionary. Click the model data badge in the bottom left corner of the
model, then click the External Data link.

3 In the Model Hierarchy pane of the Model Explorer, under the External Data node, expand the
sldemo_fuelsys_dd_controller data dictionary node.

4 Select Design Data.
5 You will link the PumpCon parameter to the Pumping Constant lookup table in the model.

6 Open the airflow_calc subsystem and select the Pumping Constant lookup table.
7 In the Model Explorer, right-click the PumpCon parameter and select Requirements > Link to

Selection in Simulink.

The two objects are linked.
8 Check the link. Right-click the PumpCon parameter and select Requirements, then select the

navigation shortcut at the top of the Requirements submenu. Simulink highlights the lookup
table.

 Link Simulink Data Dictionary Entries to Requirements

8-7

Link Signal Builder Blocks to Requirements and Simulink Model
Objects

Link Signal Builder Blocks to Requirements Documents
You can create links from a signal group in a Signal Builder block to a requirements document:

1 Open the model:

sf_car
2 In the sf_car model window, double-click the User Inputs block.

The Signal Builder dialog box opens, displaying four groups of signals. The Passing Maneuver
signal group is the current active group. The RMI associates any requirements links that you add
to the current active signal group.

3 At the far-right end of the toolbar, click the Show verification settings button . (You might
need to expand the Signal Builder dialog box for this button to become visible.)

A Requirements pane opens on the right-hand side of the Signal Builder dialog box.

4 Place your cursor in the window, right-click, and select Open Outgoing Links dialog.

The Requirements Traceability Link Editor opens.
5 Click New. In the Description field, enter User input requirements.
6 When you browse and select a requirements document, the RMI stores the document path as

specified by the Document file reference option on the Requirements Settings dialog box,
Selection Linking tab.

For information about which setting to use for your working environment, see “Document Path
Storage” on page 11-34.

7 Browse to a requirements document and click Open.
8 In the Location drop-down list, select Search text to link to specified text in the document.
9 Next to the Location drop-down list, enter User Input Requirements.
10 Click Apply to create the link.
11 To verify that the RMI created the link, in the Simulink Editor, select the User Inputs block, right-

click, and select Requirements.

The link to the new requirement is the option at the top of the submenu.
12 Save the sf_car_linking model.

Note Links that you create in this way associate requirements information with individual signal
groups, not with the entire Signal Builder block.

8 Simulink Traceability Between Model Objects

8-8

In this example, switch to a different active group in the drop-down list to link a requirement to
another signal group.

Link Signal Builder Blocks to Model Objects
This example shows how to create links from a signal group in a Signal Builder block to a model
object:

1 Open the sf_car model.
2 Open the sf_car/shift_logic chart.
3 Right-click upshifting and select Requirements > Select for Linking with Simulink.
4 In the sf_car model window, double-click the User Inputs block.

The Signal Builder dialog box opens, displaying four groups of signals. The Passing Maneuver
signal group is the current active group. The RMI associates any requirements links that you add
to the current active signal group.

5 In the Signal Builder dialog box, click the Gradual Acceleration tab.
6 At the far-right end of the toolbar, click the Show verification settings button . (You might

need to expand the Signal Builder dialog box for this button to become visible.)

A Requirements pane opens on the right-hand side of the Signal Builder dialog box.

7 Place your cursor in the window, right-click, and select Open Outgoing Links dialog.

The Requirements Traceability Link Editor opens.
8 Click New. In the Description field, enter Upshifting.
9 In the Document type field, select Simulink. Click Use current. The software fills in the field

with the Location: (Type/Identifier) information for upshifting.

 Link Signal Builder Blocks to Requirements and Simulink Model Objects

8-9

10 Click Apply to create the link.
11 In the model window, select the User Inputs block, right-click, and select Requirements .

The link to the new requirement is the option at the top of the submenu.
12 To verify that the links were created, in the sf_car model window, in the Apps tab, click

Requirements Manager. In the Requirements tab, click Highlight Links to highlight the
model objects with requirements.

Note Links that you create in this way associate requirements information with individual signal
groups, not with the entire Signal Builder block.

13 Close the sf_car model.

8 Simulink Traceability Between Model Objects

8-10

Requirements Links for Library Blocks and Reference Blocks
Introduction to Library Blocks and Reference Blocks
Simulink allows you to create your own block libraries. If you create a block library, you can reuse the
functionality of a block, subsystem, or Stateflow atomic subchart in multiple models.

When you copy a library block to a Simulink model, the new block is called a reference block. You can
create several instances of this library block in one or more models.

The reference block is linked to the library block using a library link. If you change a library block,
any reference block that is linked to the library block is updated with those changes when you open
or update the model that contains the reference block.

Note For more information about reference blocks and library links, see “Custom Libraries”
(Simulink).

Library Blocks and Requirements
Library blocks themselves can have links to requirements. In addition, if a library block is a
subsystem or atomic subchart, the objects inside the library blocks can have library links. You use the
Requirements Management Interface (RMI) to create and manage requirements links in libraries and
in models.

The following sections describe how to manage requirements links on and inside library blocks and
reference blocks.

Copy Library Blocks with Requirements
When you copy a library subsystem or masked block to a model, you can highlight, view and navigate
requirements links on the library block and on objects inside the library block. However, those links
are not associated with that model. The links are stored with the library, not with the model.

You cannot add, modify, or delete requirements links on the library block from the context of the
reference block. If you disable the link from the reference block to the library block, you can modify
requirements on objects that are inside library blocks just as you can for other block attributes when
a library link has been disabled.

Manage Requirements on Reference Blocks
You use the RMI to manage requirements links on a reference block just like any other model object.
You can view and navigate both local and library requirements on a reference block.

• Locally created requirements links — Can be modified or deleted without changing the library
block:

• Manifold absolute pressure sensor
• Mass airflow estimation

• Requirements links on the library block — Cannot be modified or deleted from the context of the
reference block:

 Requirements Links for Library Blocks and Reference Blocks

8-11

• Speed sensor
• Throttle sensor
• Oxygen sensor

Manage Requirements Inside Reference Blocks
If your library block is a subsystem or a Stateflow atomic subchart, you can create requirements links
on objects inside the subsystem or subchart. If you disable the link from the reference block to the
library, you can add, modify, or delete requirements links on objects inside a reference block. Once
you have disabled the link, the RMI treats those links as locally created links.

After you make changes to requirements links on objects inside a reference block, you can resolve the
link so that those changes are pushed to the library block. The next time you create an instance of
that library block, the changes you made are copied to the new instance of the library block.

The workflow for creating a requirement link on an object inside a reference block is:

1 Within a library you have a subsystem S1. Drag S1 to a model, creating a new subsystem. This
subsystem is the reference block.

2 Disable the library link between the reference block and the library block. Keep the library
loaded while you disable the link to maintain RMI data. To disable the link, select the reference
block, and in the Subsystem tab, click Disable Link.

3 Create a link from the object inside the reference block to the requirements document.

8 Simulink Traceability Between Model Objects

8-12

Note When linking to a requirement from inside a reference block, you can create links only in
one direction: from the model to the requirements document. The RMI does not support inserting
navigation objects into requirements documents for objects inside reference blocks.

4 Resolve the library link between the reference block and the library block:

a Select the reference block.
b In the Subsystem tab, click Restore Link.
c In the Action column, click Push.
d Click OK to resolve the link to the library block and push the newly added requirement to

the object inside the library block.

When you resolve the library link between the library block and the subsystem, Simulink
pushes the new requirement link to the library block S1. The following graphic shows the
new link from inside the library block S1 to the requirement.

Note If you see a message that the library is locked, you must unlock the library before you can
push the changes to the library block.

5 If you reuse library block S1, which now has an object with a requirement link, in another model,
the new subsystem contains an object that links to that requirement.

 Requirements Links for Library Blocks and Reference Blocks

8-13

Links from Requirements to Library Blocks
If you have a requirement that links to a library block and you drag that library block to a model, the
requirement does not link to the reference block; the requirement links only to the library block.

For example, consider the situation where you have established linking between a library block (B1 in
the following graphic) and a requirement in both directions.

When you use library block B1 in a model, you can navigate from the reference block to the
requirement. However, the link from the requirement still points only to library block B1, not to the
reference block.

As discussed in the previous section, you can create requirements links on objects inside instances of
library block after disabling library links. However, the RMI prohibits you from creating a link from
the requirements document to such an object because that link would become invalid when you
restored the library link.

8 Simulink Traceability Between Model Objects

8-14

Navigate to Requirements from Model

Navigate from Model Object
You can navigate directly from a model object to that object's associated requirement. When you take
these steps, the external requirements document opens in the application, with the requirements text
highlighted.

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Open the fuel rate controller subsystem.
3 To open the linked requirement, right-click the Airflow calculation subsystem and select

Requirements > 1. “Mass airflow estimation”.

The Microsoft Word document slvnvdemo_FuelSys_DesignDescription.docx, opens with
the section 2.1 Mass airflow estimation selected.

Note If you are running a 64-bit version of MATLAB, when you navigate to a requirement in a PDF
file, the file opens at the top of the page, not at the bookmark location.

Navigate from System Requirements Block
Sometimes you want to see all the requirements links at a given level of the model hierarchy. In such
cases, you can insert a System Requirements block to collect all requirements links in a model or
subsystem. The System Requirements block lists requirements links for the model or subsystem in
which it resides; it does not list requirements links for model objects inside that model or subsystem,
because those are at a different level of the model hierarchy.

In the following example, you insert a System Requirements block at the top level of the
slvnvdemo_fuelsys_officereq model, and navigate to the requirements using the links inside
the block.

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Enable Model Highlighting in the Coverage app.
3 Open the fuel rate controller subsystem.

The Airflow calculation subsystem has a requirements link.
4 Open the Airflow calculation subsystem.
5 In the Simulink Editor, select View > Library Browser.
6 On the Libraries pane, select Simulink Requirements.

This library contains only one block—the System Requirements block.
7 Drag a System Requirements block into the Airflow calculation subsystem.

The RMI software collects and displays any requirements links for that subsystem in the System
Requirements block.

 Navigate to Requirements from Model

8-15

matlab:slvnvdemo_fuelsys_officereq
matlab:slvnvdemo_fuelsys_officereq

8 In the System Requirements block, double-click 1. “Mass airflow subsystem”.

The Microsoft Word document, slvnvdemo_FuelSys_DesignDescription.docx, opens, with
the section 2.1 Mass airflow estimation selected.

8 Simulink Traceability Between Model Objects

8-16

MATLAB Code Traceability

9

Requirements Traceability for MATLAB Code Lines

Link MATLAB Code Lines to Requirements in a Requirement Set
Create Links by Using Context Menu Shortcuts

To create requirements traceability links from MATLAB code lines to requirements in the
Requirements Editor, use the Requirements context menu in the MATLAB Editor.

1 Load the requirement set that contains the requirement that you want to link to.
2 Navigate to the Requirements Editor and select the requirement.
3 In the MATLAB Editor, select the line or lines of code that you want to link.
4 Right-click your selection.
5 From the context menu, select Requirements > Link to Selection in Requirements Browser.

Simulink Requirements creates a traceability link from the MATLAB code lines to the selected
requirement in the Requirements Editor. Navigate from your requirements to the MATLAB code lines
by using the navigation links available from the Links pane in the Requirements View of the
Requirements Editor.

Create Links Through the Outgoing Links Dialog Box

Create requirements traceability links between MATLAB code lines and requirements in requirement
sets by using the Outgoing Links dialog box.

1 Load the requirement set that contains the requirement that you want to link to.
2 Navigate to the Requirements Editor and select the requirement.
3 In the MATLAB Editor, select the line or lines of code that you want to link to the requirement.
4 Right-click your selection.
5 From the context menu, select Requirements > Open Outgoing Links dialog.
6 In the Outgoing Links dialog box, click New.
7 From the Document type drop-down list, select Requirement Set.
8 Populate the Document field and the requirement Description by clicking Use current.
9 Click OK.

Navigate from your requirements to MATLAB code lines by using the navigation links available from
the Links pane in the Requirements View of the Requirements Editor.

Link MATLAB Code Lines to Requirements Information in External
Documents
Create Link by Using Context Menu Shortcuts

To create requirements traceability links from MATLAB code lines to selections in Microsoft Word,
Microsoft Excel, or IBM Rational DOORS documents, use shortcuts in the Requirements Traceability
context menu.

1 In your requirements document, select the target requirement for the traceability link that you
want to create.

2 In the MATLAB Editor, select the line or lines of code that you want to link to the requirement.
3 In the MATLAB Editor, right-click your selection.

9 MATLAB Code Traceability

9-2

4 From the context menu, select Requirements. Depending on the type of your requirements
document, select one of these options:

• Link to Selection in Word
• Link to Selection in Excel
• Link to Selection in DOORS

The software creates a traceability link from the selected MATLAB code range to the selection in
the requirements document. If you have bidirectional linking enabled, the software also inserts a
navigation object for the selection in the requirements document. The navigation object links to
the selected MATLAB code range.

Create and Edit Links Through the Outgoing Links Dialog Box

You can create, edit, and delete traceability links through the Outgoing Links dialog box. To open the
Outgoing Links dialog box:

• In the MATLAB Editor, select the line or lines of code that you want to link to requirements.
• Right-click your selection.
• From the context menu, select Requirements > Open Outgoing Links dialog.

See “Outgoing Links Editor” on page 10-6.

Enable or Disable Traceability Links Highlighting for MATLAB Code
Review traceability in your MATLAB code by highlighting code lines that have requirements links.

Enable Traceability Highlighting of MATLAB Code

To highlight traceability links in your MATLAB code, do one of the following:

• In the View tab, in the Display section, select Highlight Traceability.
• In the MATLAB Editor, right-click in a line of code with a traceability link. From the context menu,

select Requirements > Enable Traceability Highlighting.

Disable Traceability Highlighting of MATLAB Code

To turn off highlighting of traceability links in your MATLAB code, do one of the following:

• In the View tab, in the Display section, clear Highlight Traceability.
• In the MATLAB Editor, right-click in a line of code with a traceability link. From the context menu,

select Requirements > Disable Traceability Highlighting.

Remove Traceability Links from MATLAB Code Lines
Delete Links to Requirements from MATLAB Code Lines

To remove requirements traceability links from a line or lines of MATLAB code:

1 In the MATLAB Editor, right-click within a range of code that has requirements traceability links.
2 From the context menu, select Requirements > Delete All Links.

 Requirements Traceability for MATLAB Code Lines

9-3

All links to requirements from this MATLAB code range are deleted. Links to this MATLAB code
range from external requirements documents are not deleted.

Delete Link Targets in MATLAB Code Lines

If you have links to MATLAB code ranges from external requirements documents, you can delete the
targets for these links from your MATLAB code.

To remove requirements traceability targets from a line or lines of MATLAB code:

1 Delete outgoing links as described in “Delete Links to Requirements from MATLAB Code Lines”
on page 9-3.

2 In the MATLAB Editor, right-click within a previously linked range of code.
3 From the context menu, select Requirements > Discard Named Range.

When you discard a named range, links to that MATLAB code range from external documents no
longer work. Discarding named ranges does not delete navigation objects in external
requirements documents.

Traceability for MATLAB Code Lines
Traceability Link Targets

You can create MATLAB code traceability links for:

• Lines of MATLAB code in a standalone file.
• Lines of MATLAB code inside a MATLAB Function block.

You can create links from a line or lines of MATLAB code to:

• Objects in Simulink models.
• Targets in Microsoft Word or Microsoft Excel documents.
• Targets in IBM Rational DOORS databases.
• Targets in text, HTML, or PDF documents.
• HTTP URLs.

Bidirectional linking is supported for targets in MATLAB, Simulink, Microsoft Word, Microsoft Excel,
and IBM Rational DOORS. Bidirectional linking creates links to and from the selected link
destination. To enable bidirectional linking, in the Requirements Settings dialog box, under the
Selection Linking tab, select Modify destination for bidirectional linking. For more information,
see “Selection Linking Tab” on page 5-10.

You can also create links to MATLAB code lines from any external application that supports HTTP
navigation.

Traceability Links in Code Generation Reports

Embedded Coder® embeds requirements traceability links for MATLAB files that are saved externally
from the Simulink model and referenced from MATLAB Function blocks in Simulink. In the code
generation report, click the hyperlink to navigate to the corresponding requirement in the
Requirements Editor. See “Generate Code for Models with Requirements Links” on page 11-7.

9 MATLAB Code Traceability

9-4

Storage of Traceability Links

In a standalone MATLAB file, you can create, navigate, and delete traceability links for lines of code
without changing the MATLAB file. The Requirements Management Interface (RMI) stores
requirements traceability data for a MATLAB file in a .req file with the same name and location as
the MATLAB file.

If you want to create traceability links for lines of code in a MATLAB Function block, set the parent
model to store requirements data externally. For a new model, see “Requirements Link Storage” on
page 5-4. For an existing model, see “Move Internally Stored Requirements Links to External
Storage” on page 5-5. When you create traceability links for code inside a MATLAB Function block,
the RMI stores them in a .req file for the parent model. The .req file for the model contains
requirements traceability data for linked model objects and for linked code in MATLAB Function
blocks in the model.

Limitations of MATLAB Code Traceability

Overlapping Linked Ranges

The software does not support traceability links for overlapping regions of MATLAB code. If one
linked range of code completely overlaps another smaller region of code, the link for the larger range
takes precedence over the link for the smaller range. To avoid complications from overlapping linked
ranges, when you create traceability links for MATLAB code lines, choose ranges of code that do not
overlap.

Cut and Paste Operations

You can cut or copy a selection of code that has traceability links. When you paste that selection, the
software attempts to recreate the corresponding traceability links. Depending on location and code
formatting, you might need to recreate the traceability links manually.

Drag Operation

If you select code that has traceability links and drag that code to a new location, you might need to
recreate traceability links for the code in the new location.

MATLAB Function Block Code Traceability in Web View

Requirements linked to individual MATLAB code lines inside a MATLAB Function block appear in
HTML requirements traceability reports but do not appear the Simulink Report Generator™ Web
View. See “Create and Use a Web View” (Simulink Report Generator).

Traceability for MATLAB Live Editor

Requirements traceability is not supported for MATLAB Live Editor.

See Also

More About
• “Generate Code for Models with Requirements Links” on page 11-7

 Requirements Traceability for MATLAB Code Lines

9-5

URL and Custom Traceability

• “Requirement Links and Link Types” on page 10-2
• “Custom Link Types” on page 10-8

10

Requirement Links and Link Types

Requirements Traceability Links
When you want to navigate from a Simulink model or from a region of MATLAB code to a location
inside a requirements document, you can add requirements traceability links to the model or code.

Requirements traceability links have the following attributes:

• A description of up to 255 characters.
• A requirements document path name, such as a Microsoft Word file or a module in an IBM

Rational DOORS database. (The RMI supports several built-in document formats. You can also
register custom types of requirements documents. See “Supported Requirements Document
Types” on page 5-8.)

• A designated location inside the requirements document, such as:

• Bookmark
• Anchor
• ID
• Page number
• Line number
• Cell range
• Link target
• Tags that you define

Supported Model Objects for Requirements Linking
You can associate requirements links between the following types of Simulink model objects:

• Simulink block diagrams and subsystems
• Simulink blocks and annotations
• Simulink data dictionary entries
• Signal Builder signal groups
• Stateflow charts, subcharts, states, transitions, and boxes
• Stateflow functions
• Lines of MATLAB code
• Simulink Test Manager test cases

Links and Link Types
Requirements links are the data structures, managed by Simulink, that identify a specific location
within a document. You get and set the links on a block using the rmi command.

Links and link types work together to perform navigation and manage requirements. The doc and id
fields of a link uniquely identify the linked item in the external document. The RMI passes both of
these values to the navigation command when you navigate a link from the model.

10 URL and Custom Traceability

10-2

Link Type Properties
Link type properties define how links are created, identified, navigated to, and stored within the
requirement management tool. The following table describes each of these properties.

Property Description
Registration The name of the function that creates the link type. The RMI stores this

name in the Simulink model.
Label A string to identify this link type. In the “Outgoing Links Editor” on

page 10-6, this string appears on the Document type drop-down list
for a Simulink or Stateflow object.

IsFile A Boolean property that indicates if the linked documents are files
within the computer file system. If a document is a file:

• The software uses the standard method for resolving the path.
• In the Outgoing Links Editor, when you click Browse, the file

selection dialog box opens.
Extensions An array of file extensions. Use these file extensions as filter options in

the Outgoing Links Editor when you click Browse. The file extensions
infer the link type based on the document name. If you registered more
than one link type for the same file extension, the link type that you
registered takes first priority.

LocDelimiters A string containing the list of supported navigation delimiters. The first
character in the ID of a requirement specifies the type of identifier. For
example, an identifier can refer to a specific page number (#4), a named
bookmark (@my_tag), or some searchable text (?search_text). The
valid location delimiters determine the possible entries in the Outgoing
Links Editor Location drop-down list.

NavigateFcn The MATLAB callback invoked when you click a link. The function has
two input arguments: the document field and the ID field of the link:
feval(LinkType.NavigateFcn, Link.document, Link.id)

ContentsFcn The MATLAB callback invoked when you click the Document Index tab
in the Outgoing Links Editor. This function has a single input argument
that contains the full path of the resolved function or, if the link type is
not a file, the Document field contents.

The function returns three outputs:

• Labels
• Depths
• Locations

BrowseFcn The MATLAB callback invoked when you click Browse in the Outgoing
Links Editor. You do not need this function when the link type is a file.
The function takes no input arguments and returns a single output
argument that identifies the selected document.

 Requirement Links and Link Types

10-3

Property Description
CreateURLFcn The MATLAB callback that constructs a path name to the requirement.

This function uses the document path or URL to create a specific
requirement URL. The requirement URL is based on a location identifier
specified in the third input argument. The input arguments are:

• Full path name to the requirements document
• Info about creating a URL to the document (if applicable)
• Location of the requirement in the document

This function returns a single output argument specified as a character
vector. Use this argument when navigating to the requirement from the
generated report.

IsValidDocFcn The MATLAB callback invoked when you run a requirements
consistency check. The function takes one input argument—the fully
qualified name for the requirements document. It returns true if the
document can be located; it returns false if the document cannot be
found or the document name is invalid.

IsValidIdFcn The MATLAB callback invoked when you run a requirements
consistency check. This function takes two input arguments:

• Fully qualified name for the requirements document
• Location of the requirement in the document

IsValidIdFcn returns true if it finds the requirement and false if it
cannot find that requirement in the specified document.

IsValidDescFcn The MATLAB callback invoked when you run a requirements
consistency check. This function has three input arguments:

• Full path to the requirements document
• Location of the requirement in the document
• Requirement description label as stored in Simulink

IsValidDescFcn returns two outputs:

• True if the description matches the requirement, false otherwise.
• The requirement label in the document, if not matched in Simulink.

10 URL and Custom Traceability

10-4

Property Description
DetailsFcn The MATLAB callback invoked when you generate the requirements

report with the Include details from linked documents option. This
function returns detailed content associated with the requirement and
has three input arguments:

• Full path to the requirements document
• Location of the requirement in the document
• Level of details to include in report (Unused)

The DetailsFcn returns two outputs:

• Numeric array that describes the hierarchical relationship among
the fragments in the cell array

• Cell array of formatted fragments (paragraphs, tables, et al.) from
the requirement

SelectionLinkFcn The MATLAB callback invoked when you use the selection-based linking
menu option for this document type. This function has two input
arguments:

• Handle to the model object that will have the requirement link
• True if a navigation object is inserted into the requirements

document, or false if no navigation object is inserted

SelectionLinkFcn returns the requirements link structure for the
selected requirement.

GetResultFcn The MATLAB callback invoked when you link external test cases with
the requirements to the custom link type file. It is used in the custom
link type file and fetches external results to integrate with verification
statuses.

This function has one input argument:

• link: This is a slreq.Link object. The function identifies the
source and destination of the link.

The function returns a single output argument, result which is
specified as a struct with the following fields:

• status (Required): This is a value from
slreq.verification.Status (Pass, Fail, Stale, or Unknown)

• timestamp (Optional): Skip this field or mark NaT to avoid stale
result detection.

• info (Optional): This should be a character,vector or string. The
value of info is printed as a diagnostic on the tooltip of the status.

• error (Optional): This should be a character,vector or string. The
value of error is printed as a diagnostic on the tooltip of the status.
If provided, it takes precedence over the info field.

 Requirement Links and Link Types

10-5

Outgoing Links Editor
Manage Requirements Traceability Links Using the Outgoing Links Editor

You can create, edit, and delete requirements traceability links using the Outgoing Links Editor. To
open the Outgoing Links Editor:

• in the Simulink Editor, right-click on a model object that has a requirements traceability link.
From the context menu, select Requirements > Open Outgoing Links dialog.

• in the MATLAB Editor, right-click inside a region of code that has a requirements traceability link.
From the context menu, select Requirements > Open Outgoing Links dialog.

The Outgoing Links Editor opens, as shown below.

In the Outgoing Links Editor, you can:

• Create requirements links from one or more Simulink model objects or MATLAB code lines.
• Customize information about requirements links, including specifying user tags to filter

requirements highlighting and reporting.
• Delete existing requirements links.
• Modify the stored order of requirements to control the order of labels in context menus for linked

objects.

10 URL and Custom Traceability

10-6

Requirements Tab

On the Requirements tab, you specify detailed information about the link, including:

• Description of the requirement (up to 255 words). If you create a link using the document index,
unless a description already exists, the name of the index location becomes the description for the
link .

• Path name to the requirements document.
• Document type (Microsoft Word, Microsoft Excel, IBM Rational DOORS, MuPAD®, HTML, text file,

etc.).
• Location of the requirement (search text, named location, or page or item number).
• User-specified tag or keyword.

Document Index Tab

The Document Index tab is available only if you have specified a file in the Document field on the
Requirements tab that supports indexing. On the Document Index tab, the RMI generates a list of
locations in the specified requirements document for the following types of requirements documents:

• Microsoft Word
• IBMRationalDOORS
• HTML files
• MuPAD

Note The RMI cannot create document indexes for PDF files.

From the document index, select the desired requirement from the document index and click OK.
Unless a description already exists, the name of the index location becomes the description for the
link.

If you make any changes to your requirements document, to load any newly created locations into the
document index, you must click Refresh. During a MATLAB session, the RMI does not reload the
document index unless you click the Refresh button.

 Requirement Links and Link Types

10-7

Custom Link Types

Create a Custom Requirements Link Type
In this example, you implement a custom link type to a hypothetical document type, a text file with
the extension .abc. Within this document, the requirement items are identified with a special text
string, Requirement::, followed by a single space and then the requirement item inside quotation
marks (").

You will create a document index listing all the requirement items. When navigating from the
Simulink model to the requirements document, the document opens in the MATLAB Editor at the line
of the requirement that you want.

To create a custom link requirement type:

1 Write a function that implements the custom link type and save it on the MATLAB path.

For this example, the file is rmicustabcinterface.m, containing the function,
rmicustabcinterface, that implements the ABC files shipping with your installation.

2 To view this function, at the MATLAB prompt, type:

edit rmicustabcinterface

The file rmicustabcinterface.m opens in the MATLAB Editor. The content of the file is:
function linkType = rmicustabcinterface
%RMICUSTABCINTERFACE - Example custom requirement link type
%
% This file implements a requirements link type that maps
% to "ABC" files.
% You can use this link type to map a line or item within an ABC
% file to a Simulink or Stateflow object.
%
% You must register a custom requirement link type before using it.
% Once registered, the link type will be reloaded in subsequent
% sessions until you unregister it. The following commands
% perform registration and registration removal.
%
% Register command: >> rmi register rmicustabcinterface
% Unregister command: >> rmi unregister rmicustabcinterface
%
% There is an example document of this link type contained in the
% requirement demo directory to determine the path to the document
% invoke:
%
% >> which demo_req_1.abc

% Copyright 1984-2010 The MathWorks, Inc.

 % Create a default (blank) requirement link type
 linkType = ReqMgr.LinkType;
 linkType.Registration = mfilename;

 % Label describing this link type
 linkType.Label = 'ABC file (for demonstration)';

 % File information
 linkType.IsFile = 1;
 linkType.Extensions = {'.abc'};

 % Location delimiters
 linkType.LocDelimiters = '>@';
 linkType.Version = ''; % not required

 % Uncomment the functions that are implemented below
 linkType.NavigateFcn = @NavigateFcn;
 linkType.ContentsFcn = @ContentsFcn;

10 URL and Custom Traceability

10-8

function NavigateFcn(filename,locationStr)
 if ~isempty(locationStr)
 findId=0;
 switch(locationStr(1))
 case '>'
 lineNum = str2num(locationStr(2:end));
 openFileToLine(filename, lineNum);
 case '@'
 openFileToItem(filename,locationStr(2:end));
 otherwise
 openFileToLine(filename, 1);
 end
 end

function openFileToLine(fileName, lineNum)
 if lineNum > 0
 if matlab.desktop.editor.isEditorAvailable
 matlab.desktop.editor.openAndGoToLine(fileName, lineNum);
 end
 else
 edit(fileName);
 end

function openFileToItem(fileName, itemName)
 reqStr = ['Requirement:: "' itemName '"'];
 lineNum = 0;
 fid = fopen(fileName);
 i = 1;
 while lineNum == 0
 lineStr = fgetl(fid);
 if ~isempty(strfind(lineStr, reqStr))
 lineNum = i;
 end;
 if ~ischar(lineStr), break, end;
 i = i + 1;
 end;
 fclose(fid);
 openFileToLine(fileName, lineNum);

function [labels, depths, locations] = ContentsFcn(filePath)
 % Read the entire file into a variable
 fid = fopen(filePath,'r');
 contents = char(fread(fid)');
 fclose(fid);

 % Find all the requirement items
 fList1 = regexpi(contents,'\nRequirement:: "(.*?)"','tokens');

 % Combine and sort the list
 items = [fList1{:}]';
 items = sort(items);
 items = strcat('@',items);

 if (~iscell(items) && length(items)>0)
 locations = {items};
 labels = {items};
 else
 locations = [items];
 labels = [items];
 end

 depths = [];

3 To register the custom link type ABC, type the following MATLAB command:

rmi register rmicustabcinterface

The ABC file type appears on the “Outgoing Links Editor” on page 10-6 drop-down list of
document types.

4 Create a text file with the .abc extension containing several requirement items marked by the
Requirement:: string.

 Custom Link Types

10-9

For your convenience, an example file ships with your installation. The example file is
matlabroot\toolbox\slvnv\rmidemos\demo_req_1.abc. demo_req_1.abc contains the
following content:

Requirement:: "Altitude Climb Control"

Altitude climb control is entered whenever:
|Actual Altitude- Desired Altitude | > 1500

Units:
Actual Altitude - feet
Desired Altitude - feet

Description:

When the autopilot is in altitude climb
control mode, the controller maintains a
constant user-selectable target climb rate.

The user-selectable climb rate is always a
positive number if the current altitude is
above the target altitude. The actual target
climb rate is the negative of the user
setting.

End of "Altitude Climb Control">

Requirement:: "Altitude Hold"

Altitude hold mode is entered whenever:
|Actual Altitude- Desired Altitude | <
 30*Sample Period*(Pilot Climb Rate / 60)

Units:
Actual Altitude - feet
Desired Altitude - feet
Sample Period - seconds
Pilot Climb Rate - feet/minute

Description:

The transition from climb mode to altitude
hold is based on a threshold that is
proportional to the Pilot Climb Rate.

At higher climb rates the transition occurs
sooner to prevent excessive overshoot.

End of "Altitude Hold"

Requirement:: "Autopilot Disable"

Altitude hold control and altitude climb
control are disabled when autopilot enable
is false.

10 URL and Custom Traceability

10-10

Description:

Both control modes of the autopilot
can be disabled with a pilot setting.

ENd of "Autopilot Disable"

Requirement:: "Glide Slope Armed"

Glide Slope Control is armed when Glide
Slope Enable and Glide Slope Signal
are both true.

Units:
Glide Slope Enable - Logical
Glide Slope Signal - Logical

Description:

ILS Glide Slope Control of altitude is only
enabled when the pilot has enabled this mode
and the Glide Slope Signal is true. This indicates
the Glide Slope broadcast signal has been
validated by the on board receiver.

End of "Glide Slope Armed"

Requirement:: "Glide Slope Coupled"

Glide Slope control becomes coupled when the control
is armed and (Glide Slope Angle Error > 0) and
 Distance < 10000

Units:
Glide Slope Angle Error - Logical
Distance - feet

Description:

When the autopilot is in altitude climb control
mode the controller maintains a constant user
selectable target climb rate.

The user-selectable climb rate is always a positive
number if the current altitude is above the target
altitude the actual target climb rate is the
negative of the user setting.

End of "Glide Slope Coupled"
5 Open the following example model:

aero_dap3dof
6 Right-click the Reaction Jet Control subsystem and select Requirements > Open Outgoing

Links dialog.

 Custom Link Types

10-11

matlab:aero_dap3dof

The Outgoing Links Editor opens.
7 Click New to add a new requirement link. The Document type drop-down list now contains the

ABC file (for demonstration) option.

8 Set Document type to ABC file (for demonstration) and browse to the matlabroot
\toolbox\slvnv\rmidemos\demo_req_1.abc file. The browser shows only the files with
the .abc extension.

9 To define a particular location in the requirements document, use the Location field.

In this example, the rmicustabcinterface function specifies two types of location delimiters
for your requirements:

• > — Line number in a file
• @ — Named item, such as a bookmark, function, or HTML anchor

Note The rmi reference page describes other types of requirements location delimiters.

The Location drop-down list contains these two types of location delimiters whenever you set
Document type to ABC file (for demonstration).

10 Select Line number. Enter the number 26, which corresponds with the line number for the
Altitude Hold requirement in demo_req_1.abc.

11 In the Description field, enter Altitude Hold, to identify the requirement by name.
12 Click Apply.
13 Verify that the Altitude Hold requirement links to the Reaction Jet Control subsystem. Right-

click the subsystem and select Requirements > 1. “Altitude Hold”.

Create a Document Index

A document index is a list of all the requirements in a given document. To create a document index,
MATLAB uses file I/O functions to read the contents of a requirements document into a MATLAB
variable. The RMI extracts the list of requirement items.

10 URL and Custom Traceability

10-12

The example requirements document, demo_req_1.abc, defines four requirements using the string
Requirement::. To generate the document index for this ABC file, the ContentsFcn function in
rmicustabcinterface.m extracts the requirements names and inserts @ before each name.

For the demo_req_1.abc file, in the Outgoing Links: Reaction Jet Control dialog box, click the
Document Index tab. The ContentsFcn function generates the document index automatically.

Implement Custom Link Types
To implement a custom link type:

1 Create a MATLAB function file based on the custom link type template, as described in “Custom
Link Type Functions” on page 10-14.

2 Customize the custom link type file to specify the link type properties and custom callback
functions required for the custom link type, as described in “Link Type Properties” on page 10-3.

3 Register the custom link type using the rmi command 'register' option, as described in
“Custom Link Type Registration” on page 10-14.

 Custom Link Types

10-13

Why Create a Custom Link Type?
In addition to linking to built-in types of requirements documents, you can register custom
requirements document types with the Requirements Management Interface (RMI). Then you can
create requirement links from your model to these types of documents.

With custom link types, you can:

• Link to requirement items in commercial requirement tracking software
• Link to in-house database systems
• Link to document types that the RMI does not support

The custom link type API allows you to define MATLAB functions that enable linking between your
Simulink model and your custom requirements document type. These functions also enable new link
creation and navigation between the model and documents.

For example, navigation involves opening a requirements document and finding the specific
requirement record. When you click your custom link in the content menu of a linked object in the
model, Simulink uses your custom link type navigation function to open the document and highlight
the target requirement based on the implementation provided. The navigation function you
implement uses the available API to communicate with your requirements storage application.

Typically, MATLAB runs an operating system shell command or uses ActiveX communication for
sending navigation requests to external applications.

Alternatively, if your requirements are stored as custom variants of text or HTML files, you can use
the built-in editor or Web browser to open the requirements document.

Custom Link Type Functions
To create a MATLAB function file, start with the custom link type template, located in:

matlabroot\toolbox\slrequirements\linktype_examples\linktype_TEMPLATE.m

Your custom link type function:

• Must exist on the MATLAB path with a unique function and file name.
• Cannot require input arguments.
• Must return a single output argument that is an instance of the requirements link type class.

To view similar files for the built-in link types, see the following files in matlabroot\toolbox
\slrequirements\linktype_examples\:

linktype_rmi_doors.m
linktype_rmi_excel.m
linktype_rmi_html.m
linktype_rmi_text.m

Custom Link Type Registration
Register your custom link type by passing the name of the MATLAB function file to the rmi command
as follows:

10 URL and Custom Traceability

10-14

rmi register mytargetfilename

Once you register a link type, it appears in the “Outgoing Links Editor” on page 10-6 as an entry in
the Document type drop-down list. A file in your preference folder contains the list of registered link
types, so the custom link type is loaded each time you run MATLAB.

When you create links using custom link types, the software saves the registration name and the
other link properties specified in the function file. When you attempt to navigate to such a link, the
RMI resolves the link type against the registered list. If the software cannot find the link type, you see
an error message.

You can remove a link type with the following MATLAB command:

rmi unregister mytargetfilename

Custom Link Type Synchronization
After you implement custom link types for RMI that allow you to establish links from Simulink objects
to requirements in your requirements management application (RM application), you can implement
synchronization of the links between the RM application and Simulink using Simulink Requirements
functions. Links can then be reviewed and managed in your RM application environment, while
changes made are propagated to Simulink.

You first create the surrogate objects in the RM application to represent Simulink objects of interest.
You then automate the process of establishing traceability links between these surrogate objects and
other items stored in the RM application, to match links that exist on the Simulink side. After
modifying or creating new associations in the RM application, you can propagate the changes back to
Simulink. You use Simulink Requirements to implement synchronization of links for custom
requirements documents. However, this functionality is dependent upon the automation and inter-
process communication APIs available in your RM application. You use the following Simulink
Requirements functions to implement synchronization of links between RM applications and
Simulink.

To get a complete list of Simulink objects that may be considered for inclusion in the surrogate
module:

[objHs, parentIdx, isSf, objSIDs] = rmi...
('getObjectsInModel', modelName);

This command returns:

• objHs, a complete list of numeric handles
• objSIDs, a complete list of corresponding session-independent Simulink IDs
• isSf, a logical array that indicates which list positions correspond to which Stateflow objects
• parentIdx, an array of indices that provides model hierarchy information

When creating surrogate objects in your RM application, you will need to store objSIDs values – not
objHs values – because objHs values are not persistent between Simulink sessions.

To get Simulink object Name and Type information that you store on the RM application side:

[objName, objType] = rmi('getObjLabel', slObjectHandle);

To query links for a Simulink object, specified by either numeric handle or SID:

 Custom Link Types

10-15

linkInfo = rmi('getLinks', slObjectHandle)
linkInfo = rmi('getLinks', sigBuildertHandle, m)
% Signal Builder group "m" use case.
linkInfo = rmi('getLinks', [modelName objSIDs{i}]);

linkInfo is a MATLAB structure that contains link attributes. See the rmi function reference page
for more details.

After you retrieve the updated link information from your RM application, populate the fields of
linkData with the updated values, and propagate the changes to Simulink:

rmi('setLinks', slObjectHandle, linkData)

For an example MATLAB script implementing synchronization with a Microsoft Excel Workbook, see
the following:

edit([matlabroot '/toolbox/slrequirements/...
linktype_examples/slSurrogateInExcel.m'])

You can run this MATLAB script on the example model slvnvdemo_fuelsys_officereq to
generate the Excel workbook surrogate for the model.

10 URL and Custom Traceability

10-16

Review and Maintain Requirements
Links

• “Highlight Model Objects with Requirements” on page 11-2
• “Navigate to Simulink Objects from External Documents” on page 11-4
• “View Requirements Details for a Selected Block” on page 11-6
• “Generate Code for Models with Requirements Links” on page 11-7
• “Create and Customize Requirements Traceability Reports” on page 11-9
• “Create Requirements Traceability Report for A Project” on page 11-24
• “Validate Requirements Links” on page 11-25
• “Delete Requirements Links from Simulink Objects” on page 11-33
• “Document Path Storage” on page 11-34

11

Highlight Model Objects with Requirements
To review traceability in your model, you can highlight model objects that have requirements links.

Highlight Model Objects with Requirements Using Model Editor
If you are working in the Simulink Editor and want to see which model objects in the
slvnvdemo_fuelsys_officereq model have requirements, follow these steps:

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Select Coverage Highlighting from the Coverage app.

Two types of highlighting indicate model objects with requirements:

• Yellow highlighting indicates objects that have requirements links for the object itself.

• Orange outline indicates objects, such as subsystems, whose child objects have requirements
links.

Objects that do not have requirements are colored gray.

11 Review and Maintain Requirements Links

11-2

matlab:slvnvdemo_fuelsys_officereq

3 You remove the highlighting from the model from the Coverage app. Alternatively, you can right-
click anywhere in the model, and select Remove Highlighting.

While a model is highlighted, you can still manage the model and its contents.

Highlight Model Objects with Requirements Using Model Explorer
If you are working in Model Explorer and want to see which model objects have requirements, follow
these steps:

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 In the Modeling tab, click Model Explorer.
3 To highlight all model objects with requirements, click the Highlight items with requirements

on model icon ().

The Simulink Editor window opens, and all objects in the model with requirements are
highlighted.

Note If you are running a 64-bit version of MATLAB, when you navigate to a requirement in a PDF
file, the file opens at the beginning of the document, not at the specified location.

 Highlight Model Objects with Requirements

11-3

matlab:slvnvdemo_fuelsys_officereq

Navigate to Simulink Objects from External Documents
The RMI includes several functions that simplify creating navigation interfaces in external
documents. The external application that displays your document must support an application
programming interface (API) for communicating with the MATLAB software.

Provide Unique Object Identifiers
Whenever you create a requirement link for a Simulink or Stateflow object, the RMI uses a globally
unique identifier for that object. This identifier identified the object. The identifier does not change if
you rename or move the object, or add or delete requirement links. The RMI uses the unique
identifier only to resolve an object within a model.

Use the rmiobjnavigate Function
The rmiobjnavigate function identifies the Simulink or Stateflow object, highlights that object, and
brings the editor window to the front of the screen. When you navigate to a Simulink model from an
external application, invoke this function.

The first time you navigate to an item in a particular model, you might experience a slight delay while
the software initializes the communication API and the internal data structures. You do not
experience a long delay on subsequent navigation.

Determine the Navigation Command
To create a requirement link for a Simulink or Stateflow object, at the MATLAB prompt, use the
following command to find the navigation command, where obj is a handle or a uniquely resolved
name for the object:

[navCmd, objPath] = rmi('navCmd', obj);

The return values of the navCmd method are:

• navCmd — A character vector that navigates to the object when evaluated by the MATLAB
software.

• objPath — A character vector that identifies the model object.

Send navCmd to the MATLAB software for evaluation when navigating from the external application
to the object obj in the Simulink model. Use objPath to visually identify the target object in the
requirements document.

Use the ActiveX Navigation Control
The RMI uses software that includes a special Microsoft ActiveX control to enable navigation to
Simulink objects from Microsoft Word and Excel documents. You can use this same control in any
other application that supports ActiveX within its documents.

The control is derived from a push button and has the Simulink icon. There are two instance
properties that define how the control works. The tooltipstring property is displayed in the
control tooltip. The MLEvalCmd property is the character vector that you pass to the MATLAB
software for evaluation when you click the control.

11 Review and Maintain Requirements Links

11-4

Typical Code Sequence for Establishing Navigation Controls
When you create an interface to an external tool, you can automate the procedure for establishing
links. This way, you do not need to manually update the dialog box fields. This type of automation
occurs as part of the selection-based linking for certain built-in types, such as Microsoft Word and
Excel documents.

To automate the procedure for establishing links:

1 Select a Simulink or Stateflow object and an item in the external document.
2 Invoke the link creation action either from a Simulink menu or command, or a similar mechanism

in the external application.
3 Identify the document and current item using the scripting capability of the external tool. Pass

this information to the MATLAB software. Create a requirement link on the selected object using
the RMI API as follows:

a Create an empty link structure using the following command:

rmi('createempty')
b Fill in the link structure fields based on the target location in the requirements document.
c Attach the link to the object using the following command:

rmi('cat')
4 Determine the MATLAB navigation command that you must embed in the external tool, using the

navCmd method:

[navCmd, objPath] = rmi('navCmd',obj)
5 Create a navigation item in the external document using the scripting capability of the external

tool. Set the MATLAB navigation command in the property.

When using ActiveX navigation objects provided by the external tool, set the MLEvalCmd
property to the navCmd and set the tooltipstring property to objPath.

You define the MATLAB code implementation of this procedure as the SelectionLinkFcn function
in the link type definition file. The following files in matlabroot\toolbox\shared\reqmgt\
+linktypes contain examples of how to implement this functionality:

linktype_rmi_doors.m
linktype_rmi_excel.m
linktype_rmi_html.m
linktype_rmi_text.m

 Navigate to Simulink Objects from External Documents

11-5

View Requirements Details for a Selected Block

Requirements Details Workflow
When you highlight model objects with requirements, you can use the RMI Informer window to view
the requirements details for a selected block. Follow this workflow:

1 In the Apps tab, click Requirements Manager. In the Requirements tab, click Highlight
Links.

2 In your model, highlights indicate model objects with requirements links. The RMI Informer
window opens.

3 In the RMI Informer window, click the link to load the requirements details. If your Simulink
model has links to Microsoft Word, Microsoft Excel, or IBM Rational DOORS documents, the RMI
Informer displays requirements context from the requirements documents and additional link
labels stored by Simulink.

4 Select highlighted model objects to display associated RMI links in the RMI Informer window.
5 Close the requirements details window to remove highlights from the Simulink model.

For more information see “Navigate to Requirements from Model” on page 8-15.

Requirements Details Limitations
Security restrictions in Microsoft Office can interrupt the requirements details loading process.
Requirement details loaded from read-only Microsoft Office documents, documents stored on network
drives, and documents with Microsoft Office Trust Center ActiveX control restrictions may not work
with RMI. Consider enabling ActiveX controls without prompting and using requirements stored in a
writable location on the MATLAB path.

Before loading requirements details for IBM Rational DOORS links, you must be logged in to the IBM
Rational DOORS Client.

11 Review and Maintain Requirements Links

11-6

Generate Code for Models with Requirements Links
To specify that generated code of an ERT target include requirements:

1 Open the rtwdemo_requirements example model.
2 In the Modeling tab, click Model Settings.
3 In the Select tree of the Configuration Parameters dialog box, select the Code Generation

node.

The currently configured system target must be an ERT target.

4 Under Code Generation, select Comments.
5 In the Custom comments section on the right, select the Requirements in block comments

check box.
6 Under Code Generation, select Report.
7 On the Report pane, select:

• Create code generation report
• Open report automatically

8 Press Ctrl+B to build the model.
9 In the code-generation report, open rtwdemo_requirements.c.
10 Scroll to the code for the Pulse Generator block, clock. The comments for the code associated

with that block include a hyperlink to the requirement linked to that block.

11 Click the link Clock period shall be consistent with chirp tolerance to open the
HTML requirements document to the associated requirement.

Note When you click a requirements link in the code comments, the software opens the
application for the requirements document, except if the requirements document is a DOORS
module. To view a DOORS requirement, start the DOORS software and log in before clicking the
hyperlink in the code comments.

 Generate Code for Models with Requirements Links

11-7

How Requirements Information Is Included in Generated Code
After you simulate your model and verify its performance against the requirements, you can generate
code from the model for an embedded real-time application. The Embedded Coder software
generates code for Embedded Real-Time (ERT) targets.

If the model has any links to requirements, the Embedded Coder software inserts information about
the requirements links into the code comments.

For example, if a block has a requirement link, the software generates code for that block. In the code
comments for that block, the software inserts:

• Requirement description
• Hyperlink to the requirements document that contains the linked requirement associated with

that block

Note

• You must have a license for Embedded Coder to generate code for an embedded real-time
application.

• If you use an external .req file to store your requirement links, to avoid stale comments in
generated code, before code generation, you must save any change in your requirement links. For
information on how to save, see “Save Requirements Links in External Storage” on page 5-4.

Comments for the generated code include requirements descriptions and hyperlinks to the
requirements documents in the following locations.

Model Object with Requirement Location of Code Comments with
Requirements Links

Model In the main header file, <model>.h
Nonvirtual subsystem At the call site for the subsystem
Virtual subsystem At the call site of the closest nonvirtual parent

subsystem. If a virtual subsystem does not have a
nonvirtual parent, requirement descriptions
appear in the main header file for the model,
<model>.h.

Nonsubsystem block In the generated code for the block
MATLAB code line in MATLAB Function block In the generated code for the MATLAB code

line(s)

11 Review and Maintain Requirements Links

11-8

Create and Customize Requirements Traceability Reports

Create Requirements Traceability Report for Model
To create the default requirements report for a Simulink model:

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Make sure that your current working folder is writable.
3 In the Apps tab, click Requirements Manager. In the Requirements tab, select Share >

Generate Model Traceablity Report.

If your model is large and has many requirements links, it takes a few minutes to create the
report.

A Web browser window opens with the contents of the report. The following graphic shows the Table
of Contents for the slvnvdemo_fuelsys_officereq model.

A typical requirements report includes:

• Table of contents
• List of tables
• Per-subsystem sections that include:

• Tables that list objects with requirements and include links to associated requirements
documents

 Create and Customize Requirements Traceability Reports

11-9

matlab:slvnvdemo_fuelsys_officereq

• Graphic images of objects with requirements
• Lists of objects with no requirements
• MATLAB code lines with requirements in MATLAB Function blocks

For detailed information about requirements reports, see “Customize Requirements Traceability
Report for Model” on page 11-10.

If Your Model Has Library Reference Blocks

To include requirements links associated with library reference blocks, you must select Include links
in referenced libraries and data dictionaries under the Report tab of the Requirements
Settings, as described in “Customize Requirements Report” on page 11-18.

If Your Model Has Model Reference Blocks

By default, requirements links within model reference blocks in your model are not included in
requirements traceability reports. To generate a report that includes requirements information for
referenced models, follow the steps in “Report for Requirements in Model Blocks” on page 11-17.

Customize Requirements Traceability Report for Model
Create Default Requirements Report

If you have a model that contains links to external requirements documents, you can create an HTML
report that contains summarized and detailed information about those links. In addition, the report
contains links that allow you to navigate to both the model and to the requirements documents.

You can generate a default report with information about all the requirements associated with a
model and its objects.

Note If the model for which you are creating a report contains Model blocks, see “Report for
Requirements in Model Blocks” on page 11-17.

Before you generate the report, add a requirement to a Stateflow chart to see information that the
requirements report contains about Stateflow charts:

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Open the fuel rate controller subsystem.
3 Open the Microsoft Word requirements document:

matlabroot/toolbox/slvnv/rmidemos/fuelsys_req_docs/...
 slvnvdemo_FuelSys_RequirementsSpecification.docx

4 Create a link from the control logic Stateflow chart to a location in this document.
5 Keep the example model open, but close the requirements document.

To generate a default requirements report for the slvnvdemo_fuelsys_officereq model:

1 In the Requirements tab, select Share > Generate Model Traceablity Report.

11 Review and Maintain Requirements Links

11-10

The Requirements Management Interface (RMI) searches through all the blocks and subsystems in
the model for associated requirements. The RMI generates and displays a complete report in HTML
format.

The report is saved with the default name, model_name_requirements.html. If you generate a
subsequent report on the same model, the new report file overwrites any earlier report file.

The report contains the following content:

Table of Contents

The Table of Contents lists the major sections of the report. There is one System section for the
top-level model and one System section for each subsystem, Model block, or Stateflow chart.

Click a link to view information about a specific section of the model.

List of Tables

The List of Tables includes links to each table in the report.

 Create and Customize Requirements Traceability Reports

11-11

Model Information

The Model Information contains general information about the model, such as when the model was
created and when the model was last modified.

Documents Summary

The Documents Summary section lists all the requirements documents to which objects in the
slvnvdemo_fuelsys_officereq model link, along with some additional information about each
document.

11 Review and Maintain Requirements Links

11-12

• ID — The ID. In this example, DOC1, DOC2, DOC3, and DOC4 are short names for the
requirements documents linked from this model.

Before you generate a report, in the Settings dialog box, on the Reports tab, if you select User
document IDs in requirements tables, links with these short names are included throughout
the report when referring to a requirements document. When you click a short name link in a
report, the requirements document associated with that document ID opens.

When your requirements documents have long path names that can clutter the report, select the
User document IDs in requirements tables option. This option is disabled by default, as you
can see in the examples in this section.

• Document paths stored in the model — Click this link to open the requirements document in
its native application.

• Last modified — The date the requirements document was last modified.
• # links — The total number of links to a requirements document.

System

Each System section includes:

• An image of the model or model object. The objects with requirements are highlighted.

 Create and Customize Requirements Traceability Reports

11-13

• A list of requirements associated with the model or model object. In this example, click the target
document name to open the requirements document associated with the
slvnvdemo_fuelsys_officereq model.

• A list of blocks in the top-level model that have requirements. In this example, only the MAP
sensor block has a requirement at the top level. Click the link next to Target: to open the
requirements document associated with the MAP sensor block.

11 Review and Maintain Requirements Links

11-14

The preceding table does not include these blocks in the top-level model because:

• The fuel rate controller and engine gas dynamics subsystems are in dedicated chapters of the
report.

• The report lists Signal Builder blocks separately, in this example, in Table 3.3.
• A list of requirements associated with each signal group in any Signal Builder block, and a graphic

of that signal group. In this example, the Test inputs Signal Builder block in the top-level model
has one signal group that has a requirement link. Click the link under Target (document name
and location ID) to open the requirements document associated with this signal group in the
Test inputs block.

 Create and Customize Requirements Traceability Reports

11-15

Chart

Each Chart section reports on requirements in Stateflow charts, and includes:

• A graphic of the Stateflow chart that identifies each state.
• A list of elements that have requirements.

To navigate to the requirements document associated with a chart element, click the link next to
Target.

11 Review and Maintain Requirements Links

11-16

Report for Requirements in Model Blocks

If your model contains Model blocks that reference external models, the default report does not
include information about requirements in the referenced models. To generate a report that includes
requirements information for referenced models, you must have a license for the Simulink Report
Generator software. The report includes the same information and graphics for referenced models as
it does for the top-level model.

If you have a Simulink Report Generator license, before generating a requirements report, take the
following steps:

1 Open the model for which you want to create a requirements report. This workflow uses the
example model slvnvdemo_fuelsys_officereq.

2 To open the template for the default requirements report, at the MATLAB command prompt,
enter:

setedit requirements
3 In the Simulink Report Generator software window, in the far-left pane, click the Model Loop

component.

 Create and Customize Requirements Traceability Reports

11-17

4 On the far-right pane, locate the Model reference field. If you cannot see the drop-down arrow
for that field, expand the pane.

5 In the Model reference field drop-down list, select Follow all model reference blocks.
6 To generate a requirements report for the open model that includes information about referenced

models, click the Report icon .

Customize Requirements Report

The Requirements Management Interface (RMI) uses the Simulink Report Generator software to
generate the requirements report. You can customize the requirements report using the RMI or the
Simulink Report Generator software:

• “Customize Requirements Report Using the RMI Settings” on page 11-18
• “Customize Requirements Report Using Simulink Report Generator” on page 11-21

Customize Requirements Report Using the RMI Settings

There are several options for customizing a requirements report using the Requirements Settings
dialog box.

11 Review and Maintain Requirements Links

11-18

On the Report tab, select options that specify the contents that you want in the report.

Requirements Settings Report Option Description
Highlight the model before generating
report

Enables highlighting of Simulink objects with
requirements in the report graphics.

Include links in referenced libraries and
data dictionaries

Includes requirements links in referenced
libraries in the generated report.

Report objects with no links to requirements Includes lists of model objects that have no
requirements.

Show user tags for each reported link Lists the user tags, if any, for each reported link.
Use document IDs in requirements tables Uses a document ID, if available, instead of a

path name in the tables of the requirements
report. This capability prevents long path names
to requirements documents from cluttering the
report tables.

 Create and Customize Requirements Traceability Reports

11-19

Requirements Settings Report Option Description
Include details from linked documents Includes additional content from linked

requirements. The following requirements
documents are supported:

• Microsoft Word
• Microsoft Excel
• IBMRationalDOORS

Include links to Simulink objects Includes links from the report to objects in
Simulink.

Use internal HTTP server to support
navigation from system browsers

Specifies use of internal MATLAB HTTP server
for navigation from generated report to
documents and model objects. By selecting this
setting, this navigation is available from system
browsers as long as the MATLAB internal HTTP
server is active on your local host. To start the
internal HTTP server, at the MATLAB command
prompt, type rmi('httpLink').

To see how these options affect the content of the report:

1 Open the slvnvdemo_fuelsys_officereq model:

slvnvdemo_fuelsys_officereq
2 In the Requirements Viewer tab, click Link Settings.
3 In the Requirements Settings dialog box, click the Report tab.
4 For this example, select Highlight the model before generating report.

When you select this option, before generating the report, the graphics of the model that are
included in the report are highlighted so that you can easily see which objects have
requirements.

5 To close the Requirements Settings dialog box, click Close.
6 Generate a requirements report. In the Requirements tab, select S.

The requirements report opens in a browser window so that you can review the content of the
report.

7 If you do not want to overwrite the current report when you regenerate the requirements report,
rename the HTML file, for example,
slvnvdemo_fuelsys_officereq_requirements_old.html.

The default report file name is model_name_requirements.html.
8 In the Apps tab, select Requirements Manager.
9 In the Requirements tab, select Share > Generate Model Traceablity Report.

• Show user tags for each reported link — The report lists the user tags (if any) associated
with each requirement.

• Include details from linked documents — The report includes additional details for
requirements in the following types of requirements documents.

11 Review and Maintain Requirements Links

11-20

matlab:slvnvdemo_fuelsys_officereq

Requirements Document
Format

Includes in the Report

Microsoft Word Full text of the paragraph or subsection of the
requirement, including tables.

Microsoft Excel If the target requirement is a group of cells, the
report includes all those cells as a table. If the
target requirement is one cell, the report includes
that cell and all the cells in that row to the right
of the target cell.

IBMRationalDOORS By default, the report includes:

• DOORS Object Heading
• DOORS Object Text
• All other attributes except Created Thru,

attributes with empty string values, and
system attributes that are false.

Use the RptgenRMI.doorsAttribs function to
include or exclude specific attributes or groups of
attributes.

10 Close the Requirements Settings dialog box.
11 Generate a new requirements report. In the Requirements tab, select Share > Generate

Model Traceablity Report.
12 Compare this new report to the report that you renamed in step 7:

• User tags associated with requirements links are included.
• Details from the requirement content are included as specified in step 9.

13 When you are done reviewing the report, close the report and the model.

To see an example of including details in the requirements report, enter the following command at
the MATLAB command prompt:

slvnvdemo_powerwindow_report

Customize Requirements Report Using Simulink Report Generator

If you have a license for the Simulink Report Generator software, you can further modify the default
requirements report.

At the MATLAB command prompt, enter the following command:

setedit requirements

The Report Explorer GUI opens the requirements report template that the RMI uses when generating
a requirements report. The report template contains Simulink Report Generator components that
define the structure of the requirements report.

If you click a component in the middle pane, the options that you can specify for that component
appear in the right-hand pane. For detailed information about using a particular component to
customize your report, click Help at the bottom of the right-hand pane.

 Create and Customize Requirements Traceability Reports

11-21

matlab:showdemo slvnvdemo_powerwindow_report

In addition to the standard report components, Simulink Report Generator provides components
specific to the RMI in the Requirements Management Interface category.

Simulink Report Generator Component Report Information
Missing Requirements Block Loop Applies all child components to blocks that have

no requirements
Missing Requirements System Loop Applies all child components to systems that have

no requirements
Requirements Block Loop Applies all child components to blocks that have

requirements
Requirements Documents Table Inserts a table that lists requirements documents
Requirements Signal Loop Applies all child components to signal groups

with requirements
Requirements Summary Table Inserts a property table that lists requirements

information for blocks with associated
requirements

Requirements System Loop Applies all child components to systems with
requirements

Requirements Table Inserts a table that lists system and subsystem
requirements

Data Dictionary Traceability Table Inserts a table that links data dictionary
information to requirements

MATLAB Code Traceability Table Inserts a table that links MATLAB code to
requirements

Simulink Test Suite Traceability Table Inserts a table that links a Simulink test suite to
requirements

To customize the requirements report, you can:

• Add or delete components.
• Move components up or down in the report hierarchy.
• Customize components to specify how the report presents certain information.

For more information, see the Simulink Report Generator documentation.

Generate Requirements Reports Using Simulink

When you have a model open in Simulink, the Model Editor provides two options for creating
requirements reports:

System Design Description Report

The System Design Description report describes a system design represented by the current Simulink
model.

You can use the System Design Description report to:

• Review a system design without having the model open.

11 Review and Maintain Requirements Links

11-22

• Generate summary and detailed descriptions of the design.
• Assess compliance with design requirements.
• Archive the system design in a format independent of the modeling environment.
• Build a customized version of the report using the Simulink Report Generator software.

To generate a System Design Description report that includes requirements information:

1 Open the model for which you want to create a report.
2 In the Modeling tab, select Compare > System Design Description Report.
3 In the Design Description dialog box, select Requirements traceability.
4 Select any other options that you want for this report.
5 Click Generate.

As the software is generating the report, the status appears in the MATLAB command window.

The report name is the model name, followed by a numeral, followed by the extension that reflects
the document type (.pdf, .html, etc.).

If your model has linked requirements, the report includes a chapter, Requirements Traceability,
that includes:

• Lists of model objects that have requirements with hyperlinks to display the objects
• Images of each subsystem, highlighting model objects with requirements

Design Requirements Report

In the Apps tab, click Requirements Manager. In the Requirements tab, click Share > Generate
Model Traceability Report. This option creates a requirements report, as described in “Create
Default Requirements Report” on page 11-10.

To specify options for the report, select Share > Report Options. Before generating the report, on
the Report tab, set the options that you want. For detailed information about these options, see
“Customize Requirements Report” on page 11-18.

 Create and Customize Requirements Traceability Reports

11-23

Create Requirements Traceability Report for A Project
To create a report for requirements traceability data in a project:

1 Open your project.
2 At the MATLAB command prompt, enter the following:

rmi('projectreport')

The MATLAB Web browser opens, showing the traceability report for the project.

This top-level HTML report contains a separate section for Simulink model files, MATLAB code files,
and other files included in the project. For each individual file with one or more associated
requirements links, a separate HTML report, or sub-report, shows the requirements traceability data
for that file. The top-level report contains links to each sub-report.

If you have a MATLAB file with requirements traceability links that is not part of a project, you can
create a separate report for the MATLAB file using the rmi('report', matlabfilepath)
command. For more information, see rmi.

11 Review and Maintain Requirements Links

11-24

Validate Requirements Links

Validate Requirements Links in a Model
Check Requirements Links with the Model Advisor

To make sure that every requirements link in your Simulink model has a valid target in a
requirements document, run the Model Advisor Requirements consistency checks:

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Open the Model Advisor to run a consistency check. In the Apps tab, click Requirements

Manager. In the Requirements tab, click Check Consistency.

In the Requirements Consistency Checking category, all the checks are selected. For this
tutorial, keep all the checks selected.

These checks identify the following problems with your model requirements.

Consistency Check Problem Identified
Identify requirement links with missing
documents

The Model Advisor cannot find the requirements
document. This might indicate a problem with the
path to the requirements document.

Identify requirement links that specify invalid
locations within documents

The Model Advisor cannot find the designated
location for the requirement. This check is
implemented for:

• Microsoft Word documents
• Microsoft Excel documents
• IBM Rational DOORS documents
• Simulink objects

 Validate Requirements Links

11-25

matlab:slvnvdemo_fuelsys_officereq

Consistency Check Problem Identified
Identify selection-based links having
description fields that do not match their
requirements document text

The Description field for the link does not match
the requirements document text. When you create
selection-based links, the Requirements
Management Interface (RMI) saves the selected text
in the link Description field. This check is
implemented for:

• Microsoft Word documents
• Microsoft Excel documents
• IBM Rational DOORS documents
• Simulink objects

Identify requirement links with path type
inconsistent with preferences

The path to the requirements document does not
match the Document file reference field in the
Requirements Settings dialog box Selection
Linking tab. This might indicate a problem with the
path to the requirements document.

On Linux systems, this check is named Identify
requirement links with absolute path type. The
check reports a warning for each requirements links
that uses an absolute path.

Note For information about how the RMI resolves
the path to the requirements document, see
“Document Path Storage” on page 11-34.

The Model Advisor checks to see if any applications that have link targets are running:

• If your model has links to Microsoft Word or Microsoft Excel documents, the consistency
check requires that you close all instances of those applications. If you have one of these
applications open, it displays a warning and does not continue the checks. The consistency
checks must verify up-to-date stored copies of the requirements documents.

• If your model has links to DOORS requirements, you must be logged in to the DOORS
software. Your DOORS database must include the module that contains the target
requirements.

3 For this tutorial, make sure that you close both Microsoft Word and Microsoft Excel.
4 Click Run Selected Checks.

After the check is complete:

• The green circles with the check mark indicate that two checks passed.
• The yellow triangles with the exclamation point indicate that two checks generated warnings.

11 Review and Maintain Requirements Links

11-26

The right-hand pane shows that two checks passed and two checks had warnings. The Report box
includes a link to the HTML report.

Keep the Model Advisor open. The next section describes how to interpret and fix the inconsistent
links.

Note To step through an example that uses the Model Advisor to check requirements links in an IBM
Rational DOORS database, run the Managing Requirements for Fault-Tolerant Fuel Control System
(IBM Rational DOORS) example in the MATLAB command prompt.

Fix Invalid Requirements Links Detected by the Model Advisor

In “Check Requirements Links with the Model Advisor” on page 11-25, three requirements
consistency checks generate warnings in the slvnvdemo_fuelsys_officereq model.

Resolve Warning: Identify requirement links that specify invalid locations within documents

To fix the warning about attempting to link to an invalid location in a requirements document:

1 In the Model Advisor, select Identify requirement links that specify invalid locations within
documents to display the description of the warning.

This check identifies a link that specifies a location that does not exist in the Microsoft Word
requirements document, slvnvdemo_FuelSys_DesignDescription.docx. The link originates
in the Terminator1 block. In this example, the target location in the requirements document was
deleted after the requirement was created.

2 Get more information about this link:

a To navigate to the Terminator1 block, under Block, click the hyperlink.
b To open the “Outgoing Links Editor” on page 10-6 for this link, under Requirements, click

the hyperlink.
3 To fix the problem from the Outgoing Links dialog, do one of the following:

• In the Location field, specify a valid location in the requirements document.
• Delete the requirements link by selecting the link and clicking Delete.

4 In the Model Advisor, select the Requirements Consistency Checking category of checks.

 Validate Requirements Links

11-27

5 Click Run Selected Checks again, and verify that the warning no longer occurs.

Resolve Warning: Identify selection-based links having description fields that do not match their
requirements document text

To fix the warnings about the Description field not matching the requirements document text:

1 In the Model Advisor, click Identify selection-based links having description fields that do
not match their requirements document text to display the description of the warning.

The first message indicated that the model contains a link to a bookmark named
Simulink_requirement_item_7 in the requirements document that does not exist.

In addition, this check identified the following mismatching text between the requirements
blocks and the requirements document:

• The Description field in the Test inputs Signal Builder block link is Normal mode of
operation. The requirement text is The simulation is run with a throttle input that
ramps from 10 to 20 degrees over a period of two seconds, then back to 10 degrees
over the next two seconds. This cycle repeats continuously while the engine is held at
a constant speed.

• The Description field in the MAP Estimate block link is Manifold pressure failure. The
requirement text in slvnvdemo_FuelSys_DesignDescription.docx is Manifold
pressure failure mode.

11 Review and Maintain Requirements Links

11-28

2 Get more information about this link:

a To navigate to a block, under Block, click the hyperlink.
b To open the “Outgoing Links Editor” on page 10-6 for this link, under Current Description,

click the hyperlink.
3 Fix this problem in one of two ways:

• In the Model Advisor, click Update. This action automatically updates the Description field
for that link so that it matches the requirement.

• In the Link Editor, manually edit the link from the block so that the Description field matches
the selected requirements text.

4 In the Model Advisor, select the Requirements Consistency Checking category of checks.
5 Click Run Selected Checks again, and verify that the warning no longer occurs.

Validate Requirements Links in a Requirements Document
Check Links in a Requirements Document

To check the links in a requirements document:

1 At the MATLAB command prompt, enter

rmi('checkdoc', docName)

docName is a character vector that represents one of the following:

• Module ID for a DOORS requirements document
• Full path name for a Microsoft Word requirements document
• Full path name for a Microsoft Excel requirements document

The rmi function creates and displays an HTML report that lists all requirements links in the
document.

The report highlights invalid links in red. For each invalid link, the report includes brief details
about the problem and a hyperlink to the invalid link in the requirements document. The report
groups together links that have the same problem.

2 Double-click the hyperlink under Document content to open the requirements document at the
invalid link.

The navigation controls for the invalid link has a different appearance than the navigation
controls for the valid links.

3 When there are invalid links in your requirements document, you have the following options:

If you want to... Do the following...
Fix the invalid links Follow the instructions in “Fix Invalid Links

in a Requirements Document” on page 11-
30.

Keep the changes to the navigation controls
without fixing the invalid links

Save the requirements document.

 Validate Requirements Links

11-29

If you want to... Do the following...
Ignore the invalid links Close the requirements document without

saving it.

When Multiple Objects Have Links to the Same Requirement

When you link multiple objects to the same requirement, only one navigation object is inserted into
the requirements document. When you double-click that navigation object, all of the linked model
objects are highlighted.

If you check the requirements document using the 'checkdoc' option of the rmi function and the
check detects a navigation object that points to multiple objects, the check stops and displays the
following dialog box.

You have two options:

• If you click Yes, or you close this dialog box, the RMI creates additional navigation objects, one for
each model object that links to that requirement. The document check continues, but the RMI
does not recheck that navigation; the report only shows one link for that requirement. To rerun
the check so that all requirements are checked, at the top of the report, click Refresh.

• If you click No, the document check continues, and the report identifies that navigation object as
a broken link.

Fix Invalid Links in a Requirements Document

Using the report that the rmi function creates, you may be able to fix the invalid links in your
requirements document.

In the following example, rmi cannot locate the model specified in two links.

To fix invalid links:

11 Review and Maintain Requirements Links

11-30

1 In the report, under Document content, click the hyperlink associated with the invalid
requirement link.

The requirements document opens with the requirement text highlighted.
2 In the requirements document, depending on the document format, take these steps:

• In DOORS:

a Select the navigation control for an invalid link.
b Select MATLAB > Select item.

• In Microsoft Word, double-click the navigation control.

A dialog box opens that allows you to fix, reset, or ignore all the invalid links with a given
problem.

3 Click one of the following options.

To... Click...
Navigate to and select a new target model or new target
objects for these broken links.

Fix all

Reset the navigation controls for these invalid links to
their original state, the state before you checked the
requirements document.

Reset all

Make no changes to the requirements document. Any
modifications rmi made to the navigation controls
remain in the requirements document.

Cancel

4 Save the requirements document to preserve the changes made by the rmi function.

Validation of Requirements Links
Requirements links in a model can become outdated when requirements change over time. Similarly,
links in requirements documents may become invalid when your Simulink model changes, for
example, when the model, or objects in the model, are renamed, moved, or deleted. The Simulink
Requirements software provides tools that allow you to detect and resolve these problems in the
model or in the requirements document.

• “When to Check Links in a Requirements Document” on page 11-31
• “How the rmi Function Checks a Requirements Document” on page 11-32

When to Check Links in a Requirements Document

When you enable Modify destination for bidirectional linking and create a link between a
requirement and a Simulink model object, the RMI software inserts a navigation control into your
requirements document. These links may become invalid if your model changes.

To check these links, the 'checkDoc' option of the rmi function reviews a requirements document
to verify that all the navigation controls represent valid links to model objects. The checkDoc
command can check the following types of requirements documents:

• Microsoft Word
• Microsoft Excel

 Validate Requirements Links

11-31

• IBM Rational DOORS

The rmi function only checks requirements documents that contain navigation controls; to check
links in your Simulink model, see “Validate Requirements Links in a Model” on page 11-25.

Note For more information about inserting navigation controls in requirements documents, see:

• “Insert Navigation Objects in Microsoft Office Documents” on page 6-9
• “Insert Navigation Objects into IBM Rational DOORS Requirements” on page 7-28

How the rmi Function Checks a Requirements Document

rmi performs the following actions:

• Locates all links to Simulink objects in the specified requirements document.
• Checks each link to verify that the target object is present in a Simulink model. If the target object

is present, rmi checks that the link label matches the target object.
• Modifies the navigation controls in the requirements document to identify any detected problems.

This allows you to see invalid links at a glance:

• Valid link:
•

Invalid link:

11 Review and Maintain Requirements Links

11-32

Delete Requirements Links from Simulink Objects

Delete a Single Link from a Simulink Object
If you have an obsolete link to a requirement, delete it from the model object.

To delete a single link to a requirement from a Simulink model object:

1 Right-click a model object and select Requirements > Open Outgoing Links dialog.
2 In the top-most pane of the Link Editor, select the link that you want to delete.
3 Click Delete.
4 Click Apply or OK to complete the deletion.

Delete All Links from a Simulink Object
To delete all links to requirements from a Simulink model object:

1 Right-click the model object and select Requirements > Delete All Outgoing Links
2 Click OK to confirm the deletion.

This action deletes all requirements at the top level of the object. For example, if you delete
requirements for a subsystem, this action does not delete any requirements for objects inside the
subsystem; it only deletes requirements for the subsystem itself. To delete requirements for child
objects inside a subsystem, Model block, or Stateflow chart, you must navigate to each child
object and perform these steps for each object from which you want to delete requirements.

Delete All Links from Multiple Simulink Objects
To delete all requirements links from a group of Simulink model objects in the same model diagram
or Stateflow chart:

1 Select the model objects whose requirements links you want to delete.
2 Right-click one of the objects and select Requirements > Delete All Outgoing Links.
3 Click OK to confirm the deletion.

This action deletes all requirements at the top level of each object. It does not delete
requirements for child objects inside subsystems, Model blocks, or Stateflow charts.

 Delete Requirements Links from Simulink Objects

11-33

Document Path Storage
When you create a requirements link, the RMI stores the location of the requirements document with
the link. If you use selection-based linking or browse to select a requirements document, the RMI
stores the document location as specified by the Document file reference option on the
Requirements Settings dialog box, Selection Linking tab. The available settings are:

• Absolute path
• Path relative to current folder
• Path relative to model folder
• Filename only (on MATLAB path)

You can also manually enter an absolute or relative path for the document location. A relative path
can be a partial path or no path at all, but you must specify the file name of the requirements
document. If you use a relative path, the document is not constrained to a single location in the file
system. With a relative path, the RMI resolves the exact location of the requirements document in
this order:

1 The software attempts to resolve the path relative to the current MATLAB folder.
2 When there is no path specification and the document is not in the current folder, the software

uses the MATLAB search path to locate the file.
3 If the RMI cannot locate the document relative to the current folder or the MATLAB search path,

the RMI resolves the path relative to the model file folder.

The following examples illustrate the procedure for locating a requirements document.

Relative (Partial) Path Example
Current MATLAB folder C:\work\scratch
Model file C:\work\models\controllers\pid.mdl
Document link ..\reqs\pid.html
Documents searched for
(in order)

C:\work\reqs\pid.html
C:\work\models\reqs\pid.html

Relative (No) Path Example
Current MATLAB folder C:\work\scratch
Model file C:\work\models\controllers\pid.mdl
Requirements document pid.html
Documents searched for
(in order)

C:\work\scratch\pid.html
<MATLAB path dir>\pid.html
C:\work\models\controllers\pid.html

Absolute Path Example
Current MATLAB folder C:\work\scratch

11 Review and Maintain Requirements Links

11-34

Model file C:\work\models\controllers\pid.mdl
Requirements document C:\work\reqs\pid.html
Documents searched for C:\work\reqs\pid.html

 Document Path Storage

11-35

Requirements Management Interface

12

Verification and Validation

• “Test Model Against Requirements and Report Results” on page 13-2
• “Analyze a Model for Standards Compliance and Design Errors” on page 13-7
• “Perform Functional Testing and Analyze Test Coverage” on page 13-9
• “Analyze Code and Test Software-in-the-Loop” on page 13-12

13

Test Model Against Requirements and Report Results

Requirements – Test Traceability Overview
Traceability between requirements and test cases helps you interpret test results and see the extent
to which your requirements are verified. You can link a requirement to elements that help verify it,
such as test cases in the Test Manager, verify statements in a Test Sequence block, or Model
Verification blocks in a model. When you run tests, a pass/fail summary appears in your requirements
set.

This example demonstrates a common requirements-based testing workflow for a cruise control
model. You start with a requirements set, a model, and a test case. You add traceability between the
tests and the safety requirements. You run the test, summarize the verification status, and report the
results.

In this example, you conduct a simple test of two requirements in the set:

• That the cruise control system transitions to disengaged from engaged when a braking event has
occurred

• That the cruise control system transitions to disengaged from engaged when the current vehicle
speed is outside the range of 20 mph to 90 mph.

Display the Requirements
1 Create a copy of the project in a working folder. The project contains data, documents, models,

and tests. Enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 In the project models folder, open the simulinkCruiseAddReqExample.slx model.
3 Display the requirements. Click the icon in the lower-right corner of the model canvas, and

select Requirements. The requirements appear below the model canvas.

13 Verification and Validation

13-2

4 Expand the requirements information to include verification and implementation status. Right-
click a requirement and select Verification Status and Implementation Status.

5 In the Project window, open the Simulink Test file slReqTests.mldatx from the tests folder.
The test file opens in the Test Manager.

Link Requirements to Tests
Link the requirements to the test case.

1 In the Project window, open the Simulink Test file slReqTests.mldatx from the tests folder.
The test file opens in the Test Manager. Explore the test suite and select Safety Tests.

Return to the model. Right-click on requirement S 3.1 and select Link from Selected Test
Case.

A link to the Safety Tests test case is added to Verified by. The yellow bars in the Verified
column indicate that the requirements are not verified.

 Test Model Against Requirements and Report Results

13-3

2 Also add a link for item S 3.4.

Run the Test
The test case uses a test harness SafetyTest_Harness1. In the test harness, a test sequence sets
the input conditions and checks the model behavior:

• The BrakeTest sequence engages the cruise control, then applies the brake. It includes the
verify statement

verify(engaged == false,...
 'verify:brake',...
 'system must disengage when brake applied')

• The LimitTest sequence engages the cruise control, then ramps up the vehicle speed until it
exceeds the upper limit. It includes the verify statement.

verify(engaged == false,...
 'verify:limit',...
 'system must disengage when limit exceeded')

1 Return to the Test Manager. To run the test case, click Run.
2 When the test finishes, review the results. The Test Manager shows that both assessments pass

and the plot provides the detailed results of each verify statement.

13 Verification and Validation

13-4

3 Return to the model and refresh the Requirements. The green bar in the Verified column
indicates that the requirement has been successfully verified.

Report the Results
1 Create a report using a custom Microsoft Word template.

a From the Test Manager results, right-click the test case name. Select Create Report.
b In the Create Test Result Report dialog box, set the options:

• Title — SafetyTest
• Results for — All Tests
• File Format — DOCX
• For the other options, keep the default selections.

c Enter a file name and select a location for the report.
d For the Template File, select the ReportTemplate.dotx file in the documents project

folder.
e Click Create.

 Test Model Against Requirements and Report Results

13-5

2 Review the report.

a The Test Case Requirements section specifies the associated requirements
b The Verify Result section contains details of the two assessments in the test, and links to

the simulation output.

See Also

Related Examples
• “Link to Requirements” (Simulink Test)
• “Validate Requirements Links in a Model” on page 11-25
• “Customize Requirements Traceability Report for Model” on page 11-10

13 Verification and Validation

13-6

Analyze a Model for Standards Compliance and Design Errors

Standards and Analysis Overview
During model development, check and analyze your model to increase confidence in its quality. Check
your model against standards such as MAB style guidelines and high-integrity system design
guidelines such as DO-178 and ISO 26262. Analyze your model for errors, dead logic, and conditions
that violate required properties. Using the analysis results, update your model and document
exceptions. Report the results using customizable templates.

Check Model for Style Guideline Violations and Design Errors
This example shows how to use the Model Advisor to check a cruise control model for MathWorks®

Advisory Board (MAB) style guideline violations and design errors. Select checks and run the analysis
on the model. Iteratively debug issues using the Model Advisor and rerun checks to verify that it is in
compliance. After passing your selected checks, report results.

Check Model for MAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAB modeling guidelines.

1 Create a copy of the project in a working folder. On the command line, enter

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample
3 In the Modeling tab, select Model Advisor.
4 Click OK to choose simulinkCruiseErrorAndStandardsExample from the System Hierarchy.
5 Check your model for MAB style guideline violations using Simulink Check.

 Analyze a Model for Standards Compliance and Design Errors

13-7

a In the left pane, in the By Product > Simulink Check > Modeling Standards > MAB
Checks folder, select:

• Check Indexing Mode
• Check model diagnostic parameters

b Right-click on the MAB Checks node and select Run Selected Checks.
c Click Check model diagnostic parameters to review the configuration parameter settings

that violate MAB style guidelines.
d In the right pane, click the parameter links to update the values in the Configuration

Parameters dialog box.
e To verify that your model passes, rerun the check. Repeat steps c and d, if necessary, to

reach compliance.
f To generate a results report of the Simulink Check checks, select the MAB Checks node,

and then, in the right pane click Generate Report....

Check Model for Design Errors

While in Model Advisor, you can also check your model for hidden design errors using Simulink
Design Verifier.

1 In the left pane, in the By Product > Simulink Design Verifier folder, select Design Error
Detection. All the checks in the folder are selected.

2 In the right pane, click Run Selected Checks.
3 After the analysis is complete, expand the Design Error Detection folder, then select checks to

review warnings or errors.
4 In the right pane, click Simulink Design Verifier Results Summary. The dialog box provides

tools to help you diagnose errors and warnings in your model.

a Review the results on the model. Click Highlight analysis results on model. Click the
Compute target speed subsystem, outlined in red. The Simulink Design Verifier Results
Inspector window provides derived ranges that can help you understand the source of an
error by identifying the possible signal values.

b Review the harness model. The Simulink Design Verifier Results Inspector window displays
information that an overflow error occurred. To see the test cases that demonstrate the
errors, click View test case.

c Review the analysis report. In the Simulink Design Verifier Results Inspector window, click
Back to summary. To see a detailed analysis report, click HTML or PDF.

See Also

Related Examples
• “Check Model Compliance by Using the Model Advisor” (Simulink Check)
• “Collect Model Metrics Using the Model Advisor” (Simulink Check)
• “Run a Design Error Detection Analysis” (Simulink Design Verifier)
• “Prove Properties in a Model” (Simulink Design Verifier)

13 Verification and Validation

13-8

Perform Functional Testing and Analyze Test Coverage
Functional testing begins with building test cases based on requirements. These tests can cover key
aspects of your design and verify that individual model components meet requirements. Test cases
include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests systematically. To
check for regression, add baseline criteria to the test cases and test the model iteratively. Coverage
measurement reflects the extent to which these tests have fully exercised the model. Coverage
measurement also helps you to add tests and requirements to meet coverage targets.

Incrementally Increase Test Coverage Using Test Case Generation
This example shows a functional testing-based testing workflow for a cruise control model. You start
with a model that has tests linked to an external requirements document, analyze the model for
coverage in Simulink Coverage, incrementally increase coverage with Simulink Design Verifier, and
report the results.

Explore the Test Harness and the Model

1 Create a copy of the project in a working folder. At the command line, enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample
sltest.harness.open('simulinkCruiseAddReqExample','SafetyTest_Harness1')

3 Load the test suite from “Test Model Against Requirements and Report Results” (Simulink Test)
and open the Simulink Test Manager. At the command line, enter:

 Perform Functional Testing and Analyze Test Coverage

13-9

sltest.testmanager.load('slReqTests.mldatx')
sltest.testmanager.view

4 Open the test sequence block. The sequence tests that the system disengages when the:

• Brake pedal is pressed
• Speed exceeds a limit

Some test sequence steps are linked to requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage

1 In the Simulink Test Manager, click the slReqTests test file.
2 To enable coverage collection for the test file, in the right page under Coverage Settings:

• Select Record coverage for referenced models
• Use Coverage filter filename to specify a coverage filter to use for the coverage analysis.

The default setting honors the model configuration parameter settings. Leaving the field
empty attaches no coverage filter.

• Select Decision, Condition, and MCDC.
3 To run the tests, on the Test Manager toolstrip, click Run.
4 When the test finishes select the Results in the Test Manager. The aggregated coverage results

show that the example model achieves 50% decision coverage, 41% condition coverage, and 25%
MCDC coverage.

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage. In Results
and Artifacts, select the slReqTests test file and open the Aggregated Coverage Results
section located in the right pane.

2 Right-click the test results and select Add Tests for Missing Coverage.
3 Under Harness, choose Create a new harness.
4 Click OK to add tests to the test suite using Simulink Design Verifier. The model being tested

must either be on the MATLAB path or in the working folder.
5 On the Test Manager toolstrip, click Run to execute the updated test suite. The test results

include coverage for the combined test case inputs, achieving increased model coverage.

13 Verification and Validation

13-10

See Also

Related Examples
• “Link to Requirements” (Simulink Test)
• “Assess Model Simulation Using verify Statements” (Simulink Test)
• “Compare Model Output To Baseline Data” (Simulink Test)
• “Generate Test Cases for Model Decision Coverage” (Simulink Design Verifier)
• “Increase Test Coverage for a Model” (Simulink Test)

 Perform Functional Testing and Analyze Test Coverage

13-11

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview
Analyze code to detect errors, check standards compliance, and evaluate key metrics such as length
and cyclomatic complexity. Typically for handwritten code, you check for run-time errors with static
code analysis and run test cases that evaluate the code against requirements and evaluate code
coverage. Based on the results, refine the code and add tests. For generated code, demonstrate that
code execution produces equivalent results to the model by using the same test cases and baseline
results. Compare the code coverage to the model coverage. Based on test results, add tests and
modify the model to regenerate code.

Analyze Code for Defects, Metrics, and MISRA C:2012
This workflow describes how to check if your model produces MISRA® C:2012 compliant code and
how to check your generated code for code metrics, code defects, and MISRA compliance. To produce
more MISRA compliant code from your model, you use the code generation and Model Advisor. To
check whether the code is MISRA compliant, you use the Polyspace MISRA C:2012 checker and
report generation capabilities. For this example, you use the model
simulinkCruiseErrorAndStandardsExample. To open the model:

1 Open the project.

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 From the project, open the model simulinkCruiseErrorAndStandardsExample.

13 Verification and Validation

13-12

Run Code Generator Checks

Before you generate code from your model, there are steps that you can take to generate code more
compliant with MISRA C and more compatible with Polyspace. This example shows how to use the
Code Generation Advisor to check your model before generating code.

1 Right-click Compute target speed and select C/C++ Code > Code Generation Advisor.
2 Select the Code Generation Advisor folder. In the right pane, move Polyspace to Selected

objectives - prioritized . The MISRA C:2012 guidelines objective is already selected.

3 Click Run Selected Checks.

 Analyze Code and Test Software-in-the-Loop

13-13

The Code Generation Advisor checks whether there are any blocks or configuration settings that
are not recommended for MISRA C:2012 compliance and Polyspace code analysis. For this
model, the check for incompatible blocks passes, but there are some configuration settings that
are incompatible with MISRA compliance and Polyspace checking.

4 Click on check that did not pass. Accept the parameter changes by selecting Modify
Parameters.

5 Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, there are steps you can take to generate code that is
more compliant with MISRA C and more compatible with Polyspace. This example shows you how to
use the Model Advisor to check your model before generating code.

1 At the bottom of the Code Generation Advisor window, select Model Advisor.
2 Under the By Task folder, select the Modeling Standards for MISRA C:2012 advisor checks.
3 Click Run Selected Checks and review the results.
4 If any of the tasks fail, make the suggested modifications and rerun the checks until the MISRA

modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can generate the code. With Polyspace, you
can check your code for compliance with MISRA C:2012 and generate reports to demonstrate
compliance with MISRA C:2012.

1 In the Simulink editor, right-click Compute target speed and select C/C++ Code > Build This
Subsystem.

2 Use the default settings for the tunable parameters and select Build.
3 After the code is generated, right-click Compute target speed and select Polyspace > Options.
4 Click the Configure (Polyspace Bug Finder) button. This option allows you to choose more

advanced Polyspace analysis options in the Polyspace configuration window.

13 Verification and Validation

13-14

5 On the same pane, select Calculate Code Metrics. This option turns on code metric calculations
for your generated code.

6 Save and close the Polyspace configuration window.
7 From your model, right-click Compute target speed and select Polyspace > Verify > Code

Generated For Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks and defect
checks. You can see the progress of the analysis in the MATLAB Command Window. Once the
analysis is finished, the Polyspace environment opens.

Review Results

After you run a Polyspace analysis of your generated code, the Polyspace environment shows you the
results of the static code analysis.

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or object is local. As
you click through the 8.7 violations, you can see that these results refer to variables that other
components also use, such as CruiseOnOff. You can annotate your code or your model to justify

 Analyze Code and Test Software-in-the-Loop

13-15

every result. But, because this model is a unit in a larger program, you can also change the
configuration of the analysis to check only a subset of MISRA rules.

2 In your model, right-click Compute target speed and select Polyspace > Options.
3 Set the Settings from (Polyspace Bug Finder) option to Project configuration. This option

allows you to choose a subset of MISRA rules in the Polyspace configuration.
4 Click the Configure button.
5 In the Polyspace Configuration window, on the Coding Standards & Code Metrics pane, select

the check box Check MISRA C:2012 and from the drop-down list, select single-unit-rules.
Now, Polyspace checks only the MISRA C:2012 rules that are applicable to a single unit.

6 Save and close the Polyspace configuration window.
7 Rerun the analysis with the new configuration.

The rules Polyspace showed previously were found because the model was analyzed by itself.
When you limited the rules Polyspace checked to the single-unit subset, only two violations were
found.

13 Verification and Validation

13-16

When this model is integrated with its parent model, you can add the rest of the MISRA C:2012 rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code metrics, you must
export your results. This section shows you how to generate a report after the analysis. If you want to
generate a report every time you run an analysis, see Generate report.

1 If they are not open already, open your results in the Polyspace environment.
2 From the toolbar, select Reporting > Run Report.
3 Select BugFinderSummary as your report type.
4 Click Run Report.

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

See Also

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder” (Polyspace Bug Finder)
• “Test Two Simulations for Equivalence” (Simulink Test)
• “Export Test Results and Generate Test Results Reports” (Simulink Test)

 Analyze Code and Test Software-in-the-Loop

13-17

	Requirements Definition
	Author Requirements in Simulink
	Author and Edit Requirements Content by Using Microsoft Word
	Customize Requirements Browser View

	Requirement Types
	Import Requirements from Third-Party Applications
	Path Settings
	Import Requirements from Microsoft Office Documents
	Import Requirements from ReqIF Files
	Import Modes

	Define Requirements Hierarchy
	Requirement Sets
	Custom Attributes of Requirement Sets

	Create Requirement Set File by Using the Simulink® Requirements™ API
	Update Imported Requirements
	Considerations for Microsoft Word Documents

	Import and Update Requirements from a Microsoft Word Document
	Import Requirements
	Update Requirements

	Export Requirement Sets and Link Sets to Previous Versions of Simulink Requirements
	Export Link Sets
	Export Requirement Sets

	Use Command-line API to Document Simulink Model in Requirements Editor
	Round Trip Workflows with ReqIF Files
	Import Requirements from ReqIF Files
	Edit Imported Content
	Export Requirements Content

	Best Practices and Guidelines for ReqIF Round Trip Workflows
	Managing Requirement Custom IDs
	Guidelines for Updating Referenced Requirements Content
	Guidelines for Editing Referenced Requirements Content
	Guidelines for Adding Details to Imported Requirements
	Guidelines for Exporting Requirements to ReqIF Files

	Create and Edit Attribute Mappings
	Specify Default ReqIF Requirement Type
	Specify ReqIF Template

	Requirements Traceability and Consistency
	Link Blocks and Requirements
	Work with Simulink Annotations

	Track Requirement Links with a Traceability Matrix
	Generate a Traceability Matrix
	Using the Traceability Matrix
	Limitations

	Requirement Links
	Linkable Items
	Link Types
	Review Requirement Links
	Resolve Links
	Load and Unload Link Information

	Define Custom Requirement and Link Types
	Requirements Consistency Checks
	Check Requirements Consistency in Model Advisor

	Manage Navigation Backlinks in External Requirements Documents
	Use Command-line API to Update or Repair Requirements Links

	Requirements-Based Verification
	Review Requirement Implementation Status Metrics Data
	Summarize Requirements Verification Status
	Display Verification Status
	Update Verification Status by Running Tests or Analyses
	Include Verification Status in Report

	Justify Requirements
	Linking to a Test Script
	Linking to a Test Script Using the Outgoing Links Editor
	Linking to a Test Script Using the API
	Integrating Results from a MATLAB Unit Test Case

	Include Results from External Sources in Verification Status
	How to Populate Verification Results from External Sources

	Linking to a Result File
	Linking to a Result File Using the Outgoing Links Editor
	Linking to a Result File Using the API

	Validate Requirements by Analyzing Model Properties
	Integrating results from a custom authored MATLAB script as a test
	Integrating Results from an External Result file
	Integrating results from a custom authored MUnit script as a test

	Change Tracking and Team-Based Workflows
	Requirements-Based Development in Projects
	Organizing Requirements, Models, and Tests

	Track Changes to Requirements Links
	Enable Change Tracking for Requirements Links
	Resolve Change Issues for Requirement Links
	Add Comments to Links
	Considerations for Using Links Change Tracking

	Compare Requirements Sets
	Compare Two .slreqx Simulink Requirements Sets
	Review Changes in Source-Controlled Files

	Compare Link Sets
	Report Requirements Information
	Report Navigation Links

	Requirements Management Interface Setup
	Configure RMI for Interaction with Microsoft Office and IBMRational DOORS
	Configure RMI for Microsoft Office
	Configure RMI for IBMRational DOORS
	Configure RMI for IBM Rational DOORS Next Generation

	Requirements Link Storage
	Save Requirements Links in External Storage
	Load Requirements Links from External Storage
	Move Internally Stored Requirements Links to External Storage
	Move Externally Stored Requirements Links to the Model File
	External Storage
	Guidelines for External Storage of Requirements Links

	Supported Requirements Document Types
	Requirements Settings
	Selection Linking Tab
	Filter Requirements with User Tags

	Microsoft Office Traceability
	Link to Requirements in Microsoft Word Documents
	Create Bookmarks in a Microsoft Word Requirements Document
	Open the Example Model and Associated Requirements Document
	Create a Link from a Model Object to a Microsoft Word Requirements Document

	Link to Requirements in Excel Workbooks
	Navigate from a Model Object to Requirements in an Excel Workbook
	Create Requirements Links to the Workbook
	Link Multiple Model Objects to a Microsoft Excel Workbook
	Change Requirements Links

	Navigate to Requirements in Microsoft Office Documents from Simulink
	Enable Linking from Microsoft Office Documents to Simulink Objects
	Insert Navigation Objects in Microsoft Office Documents
	Customize Microsoft Office Navigation Objects
	Navigate Between Microsoft Word Requirement and Model

	Requirements Traceability with IBM Rational DOORS
	Configure Requirements Management Interface for IBM Rational DOORS Software
	Before You Begin
	Manually Install Additional Files for DOORS Software
	Diagnose and Fix DXL Errors

	Link with Requirements in DOORS Next Generation Project
	Requirements Traceability with IBM Rational DOORS Next Generation
	Link to Requirements in IBM Rational DOORS Next Generation
	Navigate to Requirements from Simulink
	Work with IBM Rational DOORS Next Generation Projects with Configuration Management Enabled

	Navigate to Requirements in IBM Rational DOORS Databases from Simulink
	Enable Linking from IBM Rational DOORS Databases to Simulink Objects
	Insert Navigation Objects into IBM Rational DOORS Requirements
	Navigate Between IBM Rational DOORS Requirement and Model Object
	Why Add Navigation Objects to IBM Rational DOORS Requirements?
	Customize IBM Rational DOORS Navigation Objects

	Synchronize Simulink Models with IBM Rational DOORS Databases by using Surrogate Modules
	Synchronize a Simulink Model to Create a Surrogate Module
	Create Links Between Surrogate Module and Formal Module in an IBM Rational DOORS Database
	Resynchronize IBM Rational DOORS Surrogate Module to Reflect Model Changes
	Navigate with the Surrogate Module
	Customize IBM Rational DOORS Synchronization
	Synchronization with IBM Rational DOORS Surrogate Modules
	Advantages of Synchronizing Your Model with a Surrogate Module

	Working with IBM Rational DOORS 9 Requirements

	Simulink Traceability Between Model Objects
	Link Model Objects
	Link Objects in the Same Model
	Link Objects in Different Models

	Link Test Cases to Requirements Documents
	Establish Requirements Traceability for Testing

	Link Simulink Data Dictionary Entries to Requirements
	Link Signal Builder Blocks to Requirements and Simulink Model Objects
	Link Signal Builder Blocks to Requirements Documents
	Link Signal Builder Blocks to Model Objects

	Requirements Links for Library Blocks and Reference Blocks
	Introduction to Library Blocks and Reference Blocks
	Library Blocks and Requirements
	Copy Library Blocks with Requirements
	Manage Requirements on Reference Blocks
	Manage Requirements Inside Reference Blocks
	Links from Requirements to Library Blocks

	Navigate to Requirements from Model
	Navigate from Model Object
	Navigate from System Requirements Block

	MATLAB Code Traceability
	Requirements Traceability for MATLAB Code Lines
	Link MATLAB Code Lines to Requirements in a Requirement Set
	Link MATLAB Code Lines to Requirements Information in External Documents
	Enable or Disable Traceability Links Highlighting for MATLAB Code
	Remove Traceability Links from MATLAB Code Lines
	Traceability for MATLAB Code Lines

	URL and Custom Traceability
	Requirement Links and Link Types
	Requirements Traceability Links
	Supported Model Objects for Requirements Linking
	Links and Link Types
	Link Type Properties
	Outgoing Links Editor

	Custom Link Types
	Create a Custom Requirements Link Type
	Implement Custom Link Types
	Why Create a Custom Link Type?
	Custom Link Type Functions
	Custom Link Type Registration
	Custom Link Type Synchronization

	Review and Maintain Requirements Links
	Highlight Model Objects with Requirements
	Highlight Model Objects with Requirements Using Model Editor
	Highlight Model Objects with Requirements Using Model Explorer

	Navigate to Simulink Objects from External Documents
	Provide Unique Object Identifiers
	Use the rmiobjnavigate Function
	Determine the Navigation Command
	Use the ActiveX Navigation Control
	Typical Code Sequence for Establishing Navigation Controls

	View Requirements Details for a Selected Block
	Requirements Details Workflow
	Requirements Details Limitations

	Generate Code for Models with Requirements Links
	How Requirements Information Is Included in Generated Code

	Create and Customize Requirements Traceability Reports
	Create Requirements Traceability Report for Model
	Customize Requirements Traceability Report for Model

	Create Requirements Traceability Report for A Project
	Validate Requirements Links
	Validate Requirements Links in a Model
	Validate Requirements Links in a Requirements Document
	Validation of Requirements Links

	Delete Requirements Links from Simulink Objects
	Delete a Single Link from a Simulink Object
	Delete All Links from a Simulink Object
	Delete All Links from Multiple Simulink Objects

	Document Path Storage
	Relative (Partial) Path Example
	Relative (No) Path Example
	Absolute Path Example

	Requirements Management Interface
	Verification and Validation
	Test Model Against Requirements and Report Results
	Requirements – Test Traceability Overview
	Display the Requirements
	Link Requirements to Tests
	Run the Test
	Report the Results

	Analyze a Model for Standards Compliance and Design Errors
	Standards and Analysis Overview
	Check Model for Style Guideline Violations and Design Errors

	Perform Functional Testing and Analyze Test Coverage
	Incrementally Increase Test Coverage Using Test Case Generation

	Analyze Code and Test Software-in-the-Loop
	Code Analysis and Testing Software-in-the-Loop Overview
	Analyze Code for Defects, Metrics, and MISRA C:2012

